Abstract
The therapeutic use of sodium fluoride has been recommended in a variety of osteopenic bone diseases. The recommendations are based mainly on the known osteosclerotic effects of sodium fluoride and little information is available as to its effect on bone strength. The influence of various concentrations of sodium fluoride on bone strength in growing rats on high nnd low calcium diets was studied. The administration of sodium fluoride increased bone diameter, indicating stimulation of periosteal hone formation, but bone strength was reduced or not affected by fluoride ingestion.
-
-
High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep
Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone
-
The effect of fluoride supplementation on the strength of osteopenic bone
The strength of osteopenic bone from calcium deprived rats, quail and roosters was significantly reduced after fluoride supplementation. Using a device which measures torque, femurs from rats fed low calcium diets with 100 parts per million fluoride added to the water supply fractured at lower torque values than those values
-
Effect of fluoride on bone formation and strength in Japanese quail
The effect of fluoride on bone metabolism was studied using Japanese quail fed diets containing 1.2% calcium, 1.2% calcium + 0.075% fluoride, 0.4% calcium, and 0.4% calcium + 0.075% fluoride. In the first experiments, quail were fed the diets immediately after hatching. Low calcium intake (0.4%) resulted in a 23%
-
Fluoride and nutritional osteoporosis: Physicochemical data on bones from an experimental study in dogs
Osteoporosis was induced by feeding a low calcium-high phosphorus diet for 41 weeks to adult beagles. The effect of fluoride to modify this condition was examined by adding increasing levels to the purified diet; daily intake of fluoride was about 0, 25, 85, 300 and 1,000 /ug/kg body weight. Radiographic
-
Effects of estrogen on bone composition in rats at low and high fluoride intake
Bone examinations were carried out on female rats which had received estradiol benzoate and drinking water containing either 0.55 or 50 ppm of fluoride (F). The estradiol benzoate was injected subcutaneously twice weekly and the rats were killed after 2, 4 and 6 weeks. The results showed that estrogen treatment
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
Skeletal Fluorosis Causes Bones to be Brittle & Prone to Fracture
It has been known since as the early as the 1930s that patients with skeletal fluorosis have bone that is more brittle and prone to fracture. More recently, however, researchers have found that fluoride can reduce bone strength before the onset of skeletal fluorosis. Included below are some of the
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
Related FAN Content :
-