Abstract
Fluoride from fluoridated water accumulates not only in the enamel of teeth but also in the skeleton. The effects of fluoridated water on the skeleton are not well understood, yet there is some evidence that fluoridated water consumption increases the incidence of fractures. In the present study, femoral bending strength was measured in rats on fluoride intakes that ranged from low levels to levels well above natural high fluoride drinking water. Bone strength followed a biphasic relationship with bone fluoride content. Fluoride had a positive effect on bone strength for lower fluoride intakes and a negative influence on bone strength for higher fluoride intakes. The vertebral fluoride content at which femoral strength was maximum was between 1,100 and 1,500 ppm. The increase in femoral strength at this fluoride level was not accompanied by an increase in femoral bone density. The optimal fluoride content is within the range of bone fluoride contents found in persons living in regions with fluoridated water (1 ppm) for greater than 10 years.
NOTE from FAN: In subsequent studies, Turner was unable to duplicate the beneficial effects on bone strength which he found at low doses in this study. As Turner noted in a more extensive, follow-up study: “the present results showed no evidence of increased bone strength resulting from fluoride levels below 16 ppm.” – Ref: J Dent Res; 1995; Vol 74: 1475-81.
-
-
Fluoride content and mineralization of red deer (Cervus elaphus) antlers and pedicles from fluoride polluted and uncontaminated regions
Fluoride, calcium, and phosphorus content as well as ash percentage and ash density of primary antlers and pedicle bones were studied in nine yearling red deer stags from a fluoride polluted region in North Bohemia (Czech Republic) and in nine control animals from two uncontaminated areas in West Germany. Fluoride
-
Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats
Ingested fluoride is incorporated into bone apatite and can affect the structural integrity of bone. Fluoride absorption in the gut and incorporation into bone is affected by the presence of other ions, including calcium. We hypothesized that a low calcium phosphate diet combined with high fluoride intake would have independent
-
In vitro sodium fluoride exposure decreases torsional and bending strength and increases ductility of mouse femora
Fluoride exposure in vivo can reduce the material strength of bone, an effect that has been attributed to a change in mineral structure. An in vitro model of fluoride exposure offers the potential to study directly the effects of fluoride on bone mineral. Previous investigators have reported that soaking bones
-
The effects of sodium fluoride on bone breaking strength
The therapeutic use of sodium fluoride has been recommended in a variety of osteopenic bone diseases. The recommendations are based mainly on the known osteosclerotic effects of sodium fluoride and little information is available as to its effect on bone strength. The influence of various concentrations of sodium fluoride on
-
Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content
The effect of fluoride ions on the mechanical properties of bone tissue in tension was investigated with an in vitro model. Structurally effective Bone Mineral Content (BMC) of bovine bone tissue was changed by fluoride ion treatment. First, bovine cortical bone specimens were treated with a detergent solution in order
Related Studies :
-
-
-
In Vitro Studies on Fluoride & Bone Strength
The "in vitro" research on fluoride and bone strength confirms what has repeatedly been found in animal and human studies: the more fluoride a bone has, the weaker the bone becomes. In an in vitro bone study, the researcher directly exposes a human or animal bone to a fluoride solution
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride Reduces Bone Strength in Animals
Most animal studies investigating how fluoride effects bone strength have found either a detrimental effect, or no effect. Few animal studies have found a beneficial effect. In fact, one of the few studies that found a beneficial effect was unable to be repeated by the same authors in a later
Related FAN Content :
-