Abstract
Thirty-six young rats were used to determine the effect of the fluoride on collagen synthesis in healing of fracture. Eighteen rats received 100 ppm fluoride per day, the other 18 were not given fluoride and were used as controls. Then the tibiae of the 36 rats were successively fractured and the animals killed. That is, the first 14 animals of either group were killed one a day, and then the remaining four animals were killed on days 21, 28, 35, and 45 as the tibiae were fractured. Collagen synthesis of the callus was examined histochemically and histologically. In the fluoride-treated group, collagen synthesis was found to be defective, while it was normal in the controls.
-
-
Marked decrease in trabecular bone quality after five years of sodium fluoride therapy--assessed by biomechanical testing of iliac crest bone biopsies in osteoporotic patients
Sodium fluoride has for more than 2 decades been a commonly used therapeutic agent for established osteoporosis because of a repeatedly documented anabolic effect on trabecular bone mass. Recently, however, three controlled trials have failed to demonstrate any therapeutic advantage of NaF over placebo with respect to vertebral fracture rate.
-
[Effects of long-term fluoride in drinking water on risks of hip fracture of the elderly: an ecologic study based on database of hospitalization episodes]
OBJECTIVES: Fluoridation of drinking water is known to decrease dental caries, particularly in children. However, the effects of fluoridated water on bone over several decades are still in controversy. To assess the risk of hip fracture related to water fluoridation, we evaluated the hip fracture-related hospitalizations of the elderly between
-
A case of thick but brittle bones and instant tea
CASE DESCRIPTION A 45-year-old white male was found to have radiographic findings of a diffusely dense appendicular skeleton, mild trabecular thickening, and multiple thoracic compression fractures indicating structural weakness. Bone mineral density was above the expected range for his age on the lumbar spine and femoral neck. Social history was significant
-
Exposure to natural fluoride in well water and hip fracture: a cohort analysis in Finland
In the retrospective cohort study based on record linkage, the authors studied a cohort of persons born in 1900-1930 (n = 144,627), who had lived in the same rural location at least from 1967 to 1980. Estimates for fluoride concentrations (median, 0.1 mg/liter; maximum, 2.4 mg/liter) in well water in
-
A randomized trial of sodium fluoride (60 mg) +/- estrogen in postmenopausal osteoporotic vertebral fractures: increased vertebral fractures and peripheral bone loss with sodium fluoride; concurrent estrogen prevents peripheral loss, but not vertebral fractures
Postmenopausal Caucasian women aged less than 80 years (n = 99) with one or more atraumatic vertebral fracture and no hip fractures, were treated by cyclical administration of enteric coated sodium fluoride (NaF) or no NaF for 27 months, with precautions to prevent excessive stimulation of bone turnover. In the
Related Studies :
-
-
-
Fluoride Content of Bone Impairs Bone Quality
Water Fluoridation Increases the Fluoride Content of Bone "Fluoride analyses of the cadaver material from Kuopio revealed that fluoridation of drinking water increases the fluoride concentration in bone. In some individual cases the amount of fluoride in trabecular bone may rise to relatively high levels, notably in patients with impaired renal
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
Fluoride & Spontaneous Hip Fractures in Osteoporosis Patients
Due to its ability to increase vertebral bone mass, fluoride has been used as an experimental treatment for osteoporosis (doses > 20 mg/day). Fluoride treatment, however, proved far more harmful than beneficial. Not only was fluoride therapy shown to increase fracture rates among the treated patients, it was also found to
-
Mechanisms by which fluoride may reduce bone strength
Based on a large body of animal and human research, it is now known that fluoride ingestion can reduce bone strength and increase the rate of fracture. There are several plausible mechanisms by which fluoride can reduce bone strength. As discussed below, these mechanisms include: Reduction in Cortical Bone Density De-bonding of
Related FAN Content :
-