Abstract
Young rats were maintained, over a 2-week period, on laboratory chow and distilled water or water supplemented with 200 ppm fluoride. Metaphyseal and diaphyseal bone of the femurs and tibias of control and treated rats were analyzed. After fluoride treatment there was a decrease of lipid and citrate content and a decreased glucose utilization and lactate formation. The decrease in lipid content in bone from fluoride-treated rats was not mediated through diminished food intake or diminished weight gain of the experimental animals. It was accompanied by a significant decrease in, and alteration of the pattern of, lipid formation from acetate-J4C and citrate-1% . The decrease in citrate content was due to neither a decreased formation from exogenous acetate nor to an increased utilization of citrate. In contrast to bone, there was no fluoride effect on the total lipid or citrate content of liver. Femurs of fluoride-treated rats exhibited a decrease in mechanical strength as manifested by a decrease in ultimate stress to breaking as well as decrease in limit and modulus of elasticity.
-
-
Effect of sodium fluoride on bone biomechanical and histomorphometric parameters and on insulin signaling and insulin sensitivity in ovariectomized rats
Osteoporosis is a systemic disease characterized by bone degradation and decreased bone mass that promotes increased bone fragility and eventual fracture risk. Studies have investigated the use of sodium fluoride (NaF) for the treatment of osteoporosis. However, fluoride can alter glucose homeostasis. The aim of this study was to evaluate
-
Human vertebral bone: relation of strength, porosity, and mineralization to fluoride content
Radiographically normal vertebral bone cylinders from 80 male subjects were tested mechanicallly by static compression and analyzed for porosity, fluoride and ash content. As a group, they had low fluoride content, suggesting little prior intake, consonent with this geographic area. Nevertheless, increasing levels of fluoride were associated with bulkier bone,
-
On fluoride and bone strength
We welcome the opportunity to respond to the letter by Baylink et al. Their letter makes many good points but, unfortunately, it also contains several misinterpretations of our analysis. The thesis of Baylink's letter and the paper of Einhorn et al. [1] is that fluoride incorporation into cortical bone does
-
The effect of NaF in vitro on the mechanical and material properties of trabecular and cortical bone
[T]he elastic modulus measured in cortical bone using the BDI and the Oliver-Parr method decreased significantly after NaF [sodium fluoride] treatment, compared to control measurements prior to NaF treatment . . . . The general finding of the previous papers was that NaF reduces cortical-bone strength and elastic modulus, which is
-
Effects of estrogen on bone composition in rats at low and high fluoride intake
Bone examinations were carried out on female rats which had received estradiol benzoate and drinking water containing either 0.55 or 50 ppm of fluoride (F). The estradiol benzoate was injected subcutaneously twice weekly and the rats were killed after 2, 4 and 6 weeks. The results showed that estrogen treatment
Related Studies :
-
-
-
Fluoride & Insulin
Insulin is a hormone produced by the pancreas that is responsible for maintaining appropriate levels of glucose in the blood. Insulin allows the body’s cells to take up glucose from the blood, and either use it as an energy source or store it as glycogen. Blood glucose levels in diabetics
-
In Vitro Studies on Fluoride & Bone Strength
The "in vitro" research on fluoride and bone strength confirms what has repeatedly been found in animal and human studies: the more fluoride a bone has, the weaker the bone becomes. In an in vitro bone study, the researcher directly exposes a human or animal bone to a fluoride solution
-
Fluoride Sensitivity Among Diabetics
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism “The present study showed that aortae and mesenteric arteries from streptozotocin-induced diabetic rats exhibited greater contractions
-
NRC (2006): Fluoride's Effect on Glucose Metabolism
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism The following discussion is from pages 258-260 of the NRC’s report’s “Fluoride in Drinking Water: A Scientific
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
Related FAN Content :
-