Abstract
In order to study the effects of fluoride on the central nervous system, 33-42-day old rat pups generated by three groups of female Wistar rats, which were given distilled water containing 0, 30 and 60 ppm NaF respectively beforehand as drinking water for 85 days, were used for behavior test and cerebral morphological examination. The results of behavior test showed that the latent period of pain reaction and that of conditioned reflex in the 30 ppm F and 60 ppm F groups were longer than that in the control group (P less than 0.05 or P less than 0.01). morphological examination of the pup brains showed that the nerve cell density of the 60 ppm F group was higher than that of the control group (P less than 0.05). Electronmicroscopically, mild degeneration of organelles of the nerve cells was observed in those brains of the 60 ppm F group.
-
-
Gut microbiota perturbations and neurodevelopmental impacts in offspring rats concurrently exposure to inorganic arsenic and fluoride.
Many “hot spot” geographic areas across the world with drinking water co-contaminated with inorganic arsenic (iAs) and fluoride (F-), two of the most common natural contaminants in drinking water. Both iAs and F- are known neurotoxins and affect neurodevelopment of children. However, very few studies have investigated the neurodevelopmental effects
-
Effects of chronic fluoride exposure on object recognition memory and mRNA expression of SNARE complex in hippocampus of male mice
This study aimed to investigate the effects of long-term fluoride exposure on object recognition memory and mRNA expression of soluble N-ethylmaleimidesensitive fusion protein attachment protein receptors (SNARE) complex (synaptosome-associated protein of 25 kDa (SNAP-25), vesicle-associated membrane protein 2 (VAMP-2), and syntaxin 1A) in the hippocampus of male mice. Sixty sexually matured
-
Neuroprotective influence of taurine on fluoride-induced biochemical and behavioral deficits in rats.
Highlights Influence of taurine was studied in rat model of fluoride neurotoxicity. Taurine reversed the fluoride-induced neurobehavioural deficits. Taurine decreased intracellular hydrogen peroxide and lipid peroxidation levels. Taurine reversed the fluoride-induced inhibition of acetylcholinesterase activity. Taurine may be a potential therapeutic agent in fluoride-mediated neurotoxicity. Epidemiological and experimental studies have
-
Calcium preventing locomotor behavioral and dental toxicities of fluoride by decreasing serum fluoride level in rats
Spontaneous motor activity, rota-rod performance (motor co-ordination), body weight gain, food intake, activities of total cholinesterase (blood) and acetylcholinesterase (brain), and dental structure were determined in adult female rats treated with a very high dose of sodium fluoride (500 ppm in drinking water) alone and in combination with calcium carbonate
-
[Effects of selenium on the damage of learning-memory ability of mice induced by fluoride].
Sodium fluoride added with or without selenite in deionized water was administered to male mice for 8 weeks. The influences of fluoride on learning-memory behavior were tested on Y-maze, and the ultrastructure of Gray 1 synaptic interface in the CA3 area hippocampus was qualitatively analyzed by electron microscopy and computer
Related Studies :
-
-
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
Related FAN Content :
-