Abstract
Chronic long-term exposure to high levels of fluoride leads to fluorosis, manifested by skeletal fluorosis and damage to internal organs, including kidneys, liver, parathyroid glands, and brain. Excess fluoride can also cause DNA damage, trigger apoptosis, and change cell cycle. The effect of fluoride may be exacerbated by lead (Pb), a potent inhibitor of many enzymes and a factor causing apoptosis, still present in the environment in excessive amounts. Therefore, in this study, we investigated the effects of sodium fluoride (NaF) and/or lead acetate (PbAc) on development of apoptosis, cell vitality, and proliferation in the liver cell line HepG2. We examined hepatocytes from the liver cell line HepG2, incubated for 48 h with NaF, PbAc, and their mixture (NaF + PbAc), and used for measuring apoptosis, index of proliferation, and vitality of cells. Incubation of the hepatocytes with NaF or PbAc increased apoptosis, more when fluoride and Pb were used simultaneously. Vitality of the cells depended on the compound used and its concentration. Proliferation slightly increased and then decreased in a high fluoride environment; it decreased significantly after addition of Pb in a dose-dependent manner. When used together, fluoride inhibited the decreasing effect of Pb on cell proliferation.
-
-
Sex-specific effects of fluoride and lead exposures on histology, antioxidant physiology, and immune system in the liver of zebrafish (Danio rerio).
Fluoride and Pb are both toxic to organisms; however, their combination effects and the corresponding toxic mechanisms remain unclear. In this study, male and female zebrafish (1:1) were evaluated to understand the effects of F and Pb alone and combined on growth, tissue microstructure, oxidative stress, and immune system functions
-
Co-exposure to Arsenic-Fluoride Results in Endoplasmic Reticulum Stress-Induced Apoptosis Through the PERK Signaling Pathway in the Liver of Offspring Rats.
Arsenic and fluoride are two of the major groundwater pollutants. To better understand the liver damage induced during development, 24 male rats exposed to fluoride (F), arsenic (As), and their combination (As + F) from the prenatal stage to 90 days after birth were selected for analysis. Histopathological results showed
-
Significance of Inflammation and Apoptosis in Hepatocellular Death in Rat, Co-treated with Arsenic and Fluoride.
Health effects elicited by combined environmental exposures to xenobiotics, in many instances, still remain unresolved. One of these examples is the combined toxicity of arsenic and fluoride. The present study was undertaken to delineate the role of inflammation and apoptosis in hepatocellular death caused by co-exposure to arsenic and fluoride
-
Arsenic and fluoride co-exposure affects the expression of apoptotic and inflammatory genes and proteins in mononuclear cells from children
Humans may be exposed to arsenic (As) and fluoride (F) through water consumption. However, the interaction between these two elements and gene expression in apoptosis or inflammatory processes in children has not been thoroughly investigated. Herein, the expression of cIAP-1, XIAP, TNF-?, ENA-78, survivin, CD25, and CD40 was evaluated by
-
Blood lead of children in Wamiao-Xinhuai intelligence study (Letter).
As an additional part of our investigation of an association between fluoride in drinking water and children’s intelligence in two villages of Sihong County, Jiangsu Province, China, we have now determined blood lead levels of children in that study. Blood samples (80 ?L) were collected on June 18 and 19, 2003
Related Studies :
-
-
-
Unheeded Warnings: Government Health Authorities Ignore Fluoride Risk for Kidney Patients
Despite the well known fact that individuals with kidney disease are at much higher risk of fluoride toxicity than the general population, there has yet to be any attempt in the United States, or any other country that practices mass-scale water fluoridation to determine the prevalence of fluoride-related effects (e.g.,
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
Related FAN Content :
-