Abstract
Nodular bone lesions were identified in three species of fruit bat in the Metropolitan Toronto Zoo collection: 25 of 43 Indian fruit bats (Pteropus giganteus), eight of eight grey-headed flying foxes (P. poliocephalus), and seven of 45 Egyptian fruit bats (Rousettus aegyptiacus). The condition was investigated by retrospective study of clinical and necropsy records, by regular physical examination, radiography, and blood sampling of bats currently in the collection, and by postmortem examination. Bone from necropsy specimens had markedly raised fluoride levels (3,300 ± 1,100 ppm) compared with similar bone samples from another collection (300 ± 50 ppm). Samples of the fruit bat diet contained fluoride at levels higher than the recommended dietary intake. Consequently, the osteoproliferation was attributed to fluorosis.
-
-
Value of the bone biopsy in the diagnosis of industrial fluorosis
Iliac crest biopsies taken from 43 men with industrial fluorosis were compared with control bone samples. The bone fluoride content was determined, histological examinations were made on stained sections and microradiographs, and morphometric analysis performed on the microradiographs alone. In the subjects with fluorosis, the bone fluoride content (5617 +/- 2143
-
X-Ray analysis of 80 patients with severe endemic fluorosis caused by coal burning
Radiographs of 80 patients with severe endemic fluorosis of coal-burning type [CBEF] - 49 males and 31 females aged 30 to 70 years - were analysed to examine the changes to the bone substance, peripheral structure of bone, and joints. The changes to bone substance were: 1) osteosclerosis type, 62
-
[Two cases of skeletal fluorosis in the hand].
Skeletal fluorosis is well known, particularly in the spine, pelvis and forearm. However, the hand may also be involved. The authors report two cases of this site in endemic areas in Senegal, after ingestion of large amounts of fluoride in the water. Fluorosis consisted of deforming metacarpal and phalangeal osteoperiotitis in one case
-
Why did the ancient inhabitants of Palmyra suffer fluorosis?
The skeletal remains uncovered from the 2nd and 3rd century underground tombs of Palmyra, Syria, retain traces of arthritis and mottled enamel. A brown discoloration was also observed in the teeth. In order to clarify that these facts can be related to fluorosis, the teeth excavated from Tomb C and
-
Comparison of rheumatoid (ankylosing) spondylitis and crippling fluorosis
(1) Fluoride concentrations were determined for autopsy samples of rib, sacrum, ilium, vertebra, adhering soft tissue, and rib marrow from a patient suffering from rheumatoid (ankylosing) spondylitis of 10 years’ duration. The fluoride concentrations were not increased above normal levels. In this case, the increased bone density seen in this
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
Related FAN Content :
-