Abstract
After predominant theories on the causes of fluorosis are described and remarks made about the metabolism of fluoride, an observation of bone fluorosis in a 64-year-old patient is reported. Because, despite painstaking research, none of the known causes of bone fluorosis could be found in our patient, a new pathomechanism is being offered for discussion, i.e., increased renal or intestinal absorption or an increase of fluoride deposited in the bone; i.e., an inborn or acquired error of fluoride metabolism. We recently observed a similar case with none of the well-known origins.
-
-
[Qualitative and quantitative variation of serum proteins in fluorosis patients].
Comparison between patients with occupational fluorosis, a group of healthy workers, and a sample from the general population revealed differences in concentrations of some polymorphic serum proteins. These differences depended on phenotypes of patients. TF 1-2, PI 1-2, and HP 2-1 patients exhibited a decreased concentration of transferrin (TF), a
-
Modifying role of GSTP1 polymorphism on the association between tea fluoride exposure and the brick-tea type fluorosis
BACKGROUND: Brick tea type fluorosis is a public health concern in the north-west area of China. The association between SNPs of genes influencing bone mass and fluorosis has attracted attention, but the association of SNPs with the risk of brick-tea type of fluorosis has not been reported. OBJECTIVE: To investigate the
-
Preliminary screening of fluorine-stained osteoblastic apoptosis-related microRNA.
This article has been accepted for publication and undergone full peer review but has not been through the copy editing, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ar.24709. Endemic fluorosis is a chronic systemic
-
[A study of the genetic basis of susceptibility to occupational fluorosis in aluminum industry workers of Siberia].
The phenotype frequency distributions of several classical blood genetic markers and dermatoglyphic characters were analyzed in workers of Siberian aluminum plants who had occupational fluorosis. Comparison with healthy workers revealed significant differences in frequencies of several markers. Phenotypes B (AB0), D (Rh), MN (MN), P1 (P), Le a (Lewis), Gc
-
Matrix metallopeptidase-2 gene rs2287074 polymorphism is associated with brick tea skeletal fluorosis in Tibetans and Kazaks, China.
Brick tea skeletal fluorosis is still a public health issue in the north-western area of China. However its pathogenesis remains unknown. Our previous study reveals that the severity of skeletal fluorosis in Tibetans is more serious than that in Kazaks, although they have similar fluoride exposure, suggesting the onset of
Related Studies :
-
-
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
Related FAN Content :
-