Abstract
The west plain region of Jilin province of northeast China is one of the typical endemic fluorosis areas caused by drinking water for many years. Investigations of hydrogeological and ecoenvironmental conditions as well as endemic fluorosis were conducted in 1998. Results show that the ground water, especially, the water in the unconfined aquifer is the main source of drinking water for local residents. The fluoride concentration in groundwater in the unconfined aquifers is higher than that in the confined aquifer in the west plain of Jilin province. The fluoride concentration in the unconfined aquifer can be used to classify the plain into fluoride deficient area, optimum area and excess area, which trend from west to east. High fluoride (>1.0 mg L(-1)) in drinking water resulted in dental and skeletal fluorosis in local residents (children and pregnant women). There exists a positive correlation between fluoride concentration in the drinking water and the morbidities of endemic fluorosis disease (r1 = 0.781, r2 = 0.872). Health risks associated with fluoride concentration in drinking water are assessed. It has been determined that fluoride concentration in excess of 1.0 mg L(-1) exposes residents to high health risks based on risk identification. The study area is classified into five health risk classes as shown in Figure 4. The risk indexes of this area more than 1.0 are accounted for 68% of the total west plain region.
-
-
Periarticular calcifications containing giant pseudo-crystals of francolite in skeletal fluorosis from 1,1-difluoroethane 'huffing".
Highlights Diagnosing inhalant use disorder can be lifesaving. Chronic inhalation of F--containing vapors can cause skeletal fluorosis (SF). SF can elevate bone density and cause periostitis and ectopic calcification. Francolite is a carbonate-rich fluorapatite. Periarticular calcification in SF can comprise giant pseudo-crystals of francolite. Inhalant use disorder is a psychiatric
-
Prevalence and estimation of the occupational risk of the musculoskeletal disorders in workers of aluminum potrooms
The aim of this research is to investigate the role of the occupational risks in the development of pain syndromes of the locomotor system in workers employed in basic workplaces at aluminum potrooms, basing on the periodic health screenings data. It has been determined that working under the conditions of
-
Screening vs. individual detection of industrial fluorosis: a decision analysis model
In preventive medicine and occupational health, decision-makers face uncertainty, divergent opinions, and varying needs. In the Swiss aluminum industry, screening for industrial fluorosis illustrates how decision analysis and cost-effectiveness analysis can provide rational and explicit models of decision-making in such contexts. Data on fluoride-exposed potroom workers are used to compare
-
Severe bone deformities in young children from vitamin D deficiency and fluorosis in Bihar-India
A case-control study was undertaken to understand the etiopathology of the bone deformities among young children in a fluoride-affected village of the Bihar State. Two villages were selected: one village with high fluoride in drinking water (7.9 +/- 4.15 ppm), and the other village with normal levels of fluoride (0.6
-
[Scan microscopic investigation of human industrial fluorosis (author's transl)].
We examined the bones of 3 people in various stages of industrial fluorosis. Scan microscopic studies were conducted on the periosteal surface and the fracture surfaces of ribs, tibia and vault of the cranium. In the mild form of fluorosis, we found slight swelling and impregnation with globular and crystalline
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
X-Ray Diagnosis of Skeletal Fluorosis
In 1937, Kaj Roholm published his seminal study Fluorine Intoxication in which he described three phases of bone changes that occur in skeletal fluorosis. (See below). These three phases, which are detectable by x-ray, have been widely used as a diagnostic guide for detecting the disease. They describe an osteosclerotic bone disease that develops first in the axial skeleton (the spine, pelvis, and ribs), and ultimately results in extensive calcification of ligaments and cartilage, as well as bony outgrowths such as osteophytes and exostoses. Subsequent research has found, however, that x-rays provide a very crude measure for diagnosing fluorosis since the disease can cause symptoms and effects (e.g., osteoarthritis) before, and in the absence of, radiologicaly detectable osteosclerosis in the spine.
Related FAN Content :
-