Abstract
The west plain region of Jilin province of northeast China is one of the typical endemic fluorosis areas caused by drinking water for many years. Investigations of hydrogeological and ecoenvironmental conditions as well as endemic fluorosis were conducted in 1998. Results show that the ground water, especially, the water in the unconfined aquifer is the main source of drinking water for local residents. The fluoride concentration in groundwater in the unconfined aquifers is higher than that in the confined aquifer in the west plain of Jilin province. The fluoride concentration in the unconfined aquifer can be used to classify the plain into fluoride deficient area, optimum area and excess area, which trend from west to east. High fluoride (>1.0 mg L(-1)) in drinking water resulted in dental and skeletal fluorosis in local residents (children and pregnant women). There exists a positive correlation between fluoride concentration in the drinking water and the morbidities of endemic fluorosis disease (r1 = 0.781, r2 = 0.872). Health risks associated with fluoride concentration in drinking water are assessed. It has been determined that fluoride concentration in excess of 1.0 mg L(-1) exposes residents to high health risks based on risk identification. The study area is classified into five health risk classes as shown in Figure 4. The risk indexes of this area more than 1.0 are accounted for 68% of the total west plain region.
-
-
Fluoride exposure altered metabolomic profile in rat serum
Highlights 58 NEG and 73 POS metabolites were altered in F-treated 3 weeks rat serum. 126 NEG and 70 POS metabolites were altered in F-treated 11 weeks rat serum. Four significantly different metabolites, nicotinamide, adenosine, 1-Oleoyl-sn-glycero-3-phosphocholine, and 1-Stearoyl-sn-glycerol 3-phosphocholine were shared by two models. Urea, N2-Acetyl-l-ornithine, and betaine were
-
Preliminary screening of fluorine-stained osteoblastic apoptosis-related microRNA.
This article has been accepted for publication and undergone full peer review but has not been through the copy editing, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ar.24709. Endemic fluorosis is a chronic systemic
-
Skeletal fluorosis and its neurological complications
Of 46 cases of skeletal fluorosis in Punjab, India, 21 had compression paraplegia, All the patients lived in a small area where drinking-water and soil had an extremely high (though variable) content of fluoride. The intoxication chiefly affected the skeleton, producing typical radiological features of diagnostic value. The teeth also showed
-
Fluoride in Drinking Water: A Scientific Review of EPA’s Standards.
Excerpts: Summary Under the Safe Drinking Water Act, the U.S. Environmental Protection Agency (EPA) is required to establish exposure standards for contaminants in public drinking-water systems that might cause any adverse effects on human health. These standards include the maximum contaminant level goal (MCLG), the maximum contaminant level (MCL), and the secondary
-
Occurrence of fluorosis in endemic forms in Hyderabad state.
FIRST PAGE OF PAPER All animal tissues and plants contain fluorine in very small amounts. It is found in soils, rocks and water. No convincing evidence has been as yet produced to show that it performs any useful function in animal nutrition, or that it is essential for animal metabolism. During the
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride & Rheumatoid Arthritis
The symptoms of skeletal fluorosis can closely resemble rheumatoid arthritis (RA), and thus individuals with fluorosis can "easily be mistaken" as having RA. In addition, clinical research on fluoride-treated osteoporosis patients has found that fluoride exposure can exacerbate pre-existing RA, and recent research shows that the levels of fluoride found in the blood of the general population (19-57 ppb) are sufficient to effect an enzyme (15-lipoxygenase) implicated in the inflammatory process of RA.
-
Skeletal Changes in Industrial and Endemic Fluorosis
Fluorotic changes in bones and joints were evaluated in 105 aluminum workers and 20 residents of an endemic fluorosis region in India.
Related FAN Content :
-