Abstract
In the retrospective cohort study based on record linkage, the authors studied a cohort of persons born in 1900-1930 (n = 144,627), who had lived in the same rural location at least from 1967 to 1980. Estimates for fluoride concentrations (median, 0.1 mg/liter; maximum, 2.4 mg/liter) in well water in each member of the cohort were obtained by a weighted median smoothing method based on ground water measurements. Information on hip fractures was obtained from the Hospital Discharge Registry for 1981-1994. No association was observed between hip fractures and estimated fluoride concentration in the well water in either men or women when all age groups were analyzed together. However, the association was modified by age and sex so that among younger women, those aged 50-64 years, higher fluoride levels increased the risk of hip fractures. Among older men and women and younger men, no consistent association was seen. The adjusted rate ratio was 2.09 (95% confidence interval: 1.16, 3.76) for younger women who were the most exposed (>1.5 mg/liter) when compared with those who were the least exposed (< or =0.1 mg/liter). The results suggest that fluoride increases the risk of hip fractures only among women.
-
-
The effects of fluoridation on degenerative joint disease (DJD) and hip fractures
Fluoride strengthens bone, yet makes it more susceptible to fracture. If mechanical factors are important in DJD, an increased risk for DJD in communities where fluoride is consumed is also expected. Hip fractures and knee DJD joint replacements among those >65 years for 1991-1996 were compared between one community with
-
A prospective study of bone mineral content and fracture in communities with differential fluoride exposure
In 1983/1984, a study of bone mass and fractures was begun in 827 women aged 20-80 years in three rural Iowa communities selected for the fluoride and calcium content of their community water supplies. The control community's water had a calcium content of 67 mg/liter and a fluoride content of
-
Bone resorption and quantitative ultrasound in an endemic fluorosis area of Turkey.
The purpose of this prospective study was to investigate the quantity and quality of bone by quantitative ultrasound (QUS) measurements and to assess bone resorption by urinary excretion measurement of C-terminal telopeptide of type I collagen (CTX) in an adult Turkish population living in an endemic fluorosis area and consuming
-
Hip fractures and fluoridation in Utah's elderly population
OBJECTIVE: To test the effect of water fluoridated to 1 ppm on the incidence of hip fractures in the elderly. DESIGN: Ecological cohort. SETTING: The incidence of femoral neck fractures in patients 65 years of age or older was compared in three communities in Utah, one with and two without water fluoridated
-
Industrial Fluorosis [Carnow et al.]
SUMMARY: In 1242 apparently healthy and actively employed workers of a Canadian aluminum facility, the history of musculoskeletal symptoms, of the incidence of fractures, of neck and back surgery, as well as the x-ray findings were reviewed. A highly significant relationship of exposure to fluoride was established with the frequency
Related Studies :
-
-
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
-
Fluoride Content of Bone Impairs Bone Quality
Water Fluoridation Increases the Fluoride Content of Bone "Fluoride analyses of the cadaver material from Kuopio revealed that fluoridation of drinking water increases the fluoride concentration in bone. In some individual cases the amount of fluoride in trabecular bone may rise to relatively high levels, notably in patients with impaired renal
-
Clinical Trials: Fluoride Treatment & Bone Fracture in Osteoporosis Patients
Due to its ability to increase bone mass, fluoride has been used as an experimental treatment for osteoporosis. The results, however, have generally been disastrous. Rather than prevent bone fractures in osteoporosis patients, fluoride therapy (at doses of 20-34 mg/day) was repeatedly found to increase fracture rates. One of the most
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
Related FAN Content :
-