Abstract
Sera from five patients with skeletal fluorosis were investigated for total calcium, ionized calcium, phosphate, alkaline phosphatase, 25 hydroxyvitamin D (25 OHD), 1,25 dihydroxyvitamin D (1,25[OH]2D), parathyroid hormone, and osteocalcin concentrations. Total and ionized calcium concentrations were normal in four and subnormal in one, but PTH concentration was elevated in all five. The patient with a subnormal calcium concentration also had subnormal 25 OHD and 1,25(OH)2D concentrations and a supranormal PTH concentration. The remaining four had supranormal PTH concentrations despite normal total and ionized calcium concentration, and normal 25 OHD and 1,25(OH)2D levels. Osteocalcin concentration was markedly elevated in all patients, as was alkaline phosphatase activity. These observations show for the first time that patients with fluorosis have markedly elevated osteocalcin, a marker of osteoblastic activity, and that they may have significantly elevated PTH concentrations in the presence of normal total and ionized calcium concentrations.
-
-
Endemic chronic fluoride toxicity and dietary calcium deficiency interaction syndromes of metabolic bone disease and deformities in India: year 2000
Epidemiological studies during 1963-1997 were conducted in 45,725 children exposed to high intake of endemic fluoride in the drinking water since their birth. Children with adequate (dietary calcium > 800 mg/d) and inadequate (dietary calcium < 300 mg/d) calcium nutrition and with comparable intakes of fluoride (mean 9.5 +/- 1.9
-
Endemic skeletal fluorosis in children: hypocalcemia and the presence of renal resistance to parathyroid hormone
Although endemic skeletal fluorosis has been reported in children, hypocalcemia has not been previously noted. In a prevalence study of 260 schoolchildren living in an endemic fluorosis area in South Africa (water fluoride content 8-12 ppm), hypocalcemia was documented in 23%. Furthermore in a separate study of nine children with skeletal symptoms due to
-
[Effects of excess fluoride on bone turnover under conditions of diet with different calcium contents].
OBJECTIVE: To study the effects of excess fluoride on bone turnover under conditions of diet containing different amount of calcium. METHODS: The experiment was performed on rats raised on a balanced diet with adequate calcium or a monotonous diet with low calcium and given amount of fluoride in their drinking water
-
The spectrum of radiographic bone changes in children with fluorosis
Painful, crippling deformities in Tanzanian children from an area of endemic fluorosis are reported. Excessive fluoride ingestion in pregnant women may possibly poison and alter enzyme and hormonal systems in the fetus causing disturbances to osteoid formation and mineralization. Knock-knees, bowlegs, and saber shins develop when walking begins. Combinations of osteomalacia, osteoporosis,
-
Non-Endemic Skeletal Fluorosis: Causes And Associated Secondary Hyperparathyroidism (Case Report and Literature Review).
Highlights Fluorocarbon “huffing” is an under-appreciated cause of skeletal fluorosis (SF) We present a SF case with hyperparathyroidism, osteosclerosis, and osteomalacia SF may go undetected due to variation in symptoms, radiology, and biochemistry Dietary calcium, prior bone health, and skeletal F exposure influence SF features SF is common in
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride's Effect on Osteoblasts (Bone-Forming Cells)
As noted by the National Research Council, "[p]erhaps the single clearest effect of fluoride on the skeleton is its stimulation of osteoblast proliferation." (NRC 2006). Osteoblasts are bone-forming cells. "Stimulatory effects of fluoride on osteoblasts result in formation of osteoid, which subsequently undergoes mineralization." (Fisher RL, et al. 1989). If the new
-
Variability in Radiographic Appearance of Skeletal Fluorosis
Osteosclerosis (dense bone) is the bone change typically associated with skeletal fluorosis, particularly in the axial skeleton (spine, pelvis, and ribs). Research shows, however, that skeletal fluorosis produces a spectrum of bone changes, including osteomalacia, osteoporosis, exostoses, changes resulting from secondary hyperparathyroidism, and combinations thereof. Although the reason for this radiographic variability is not yet fully understood, it is believed to relate to the dose of fluoride consumed, the individual's nutritional status, exposure to aluminum, genetic susceptibility, presence of kidney disease, and area of the skeleton examined.
Related FAN Content :
-