Abstract
The circulating levels of sialic acid (N-acetylneuraminic acid) and glycosaminoglycans (GAGs) were measured in 69 patients with spinal disorders of orthopaedic interest (ankylosing spondylitis 17, osteofluorosis 6, idiopathic backache 10, osteoarthrosis 16, osteoporosis 20). The serum GAG levels showed no statistically significant change from control values in the five disorders investigated in the present study. Although osteoporosis and osteoarthrosis showed a decrease in serum sialic acid (SA) levels, the mean ratio (SA/GAG) demonstrated no change from control values. Idiopathic backache showed no difference in any of the parameters studied when compared with control values. Ankylosing spondylitis and osteofluorosis had a remarkable similarity in their clinical and radiological features, but a divergent mean value of ratio was noted. The mean ratio of both the conditions also showed a statistically significant difference from the control value. This suggests that the SA/GAG ratio can be used as a diagnostic test in ankylosing spondylitis.
-
-
Excessive ingestion of fluoride and the significance of sialic acid: glycosaminoglycans in the serum of rabbit and human subjects
The levels of sialic acid and glycosaminoglycans were explored in the sera of rabbit and human subjects who ingested fluoride and had clinical manifestation of fluorosis. Changes observed in the level of these chemical constituents in sera possibly reflect changes occurring in calcified and noncalcified tissues due to fluoride intoxication. The
-
Effects of fluoride on the ultrastructure and expression of Type I collagen in rat hard tissue
Long-term excessive fluoride (F) intake disrupts the balance of bone deposition and remodeling activities and is linked to skeletal fluorosis. Type I collagen, which is responsible for bone stability and cell biological functions, can be damaged by excessive F ingestion. In this study, Sodium fluoride (NaF) was orally administrated to
-
Bone mineral structure after six years fluoride treatment investigated by backscattered electron imaging (BSEI) and small angle x-ray scattering (SAXS): a case report
NaF, a bone formation stimulating agent, is used for the treatment of osteoporosis. Controversy exists concerning the quality of the newly formed bone and the antifracture effectiveness. We report about a 70 years old woman, who had received 50 mg NaF/d for about 6 years. Calcium or Vit D supplements
-
Industrial fluorosis [Boillat et al.]
43 potroom workers (aluminium industry) with fluorosis have been compared with 18 foundry workers of the same age, but who had never been exposed to fluorides. Clinical examination revealed a higher incidence of articular pain and limitation of motion in the exposed group. The diagnosis of fluorosis is not only
-
Radiological criteria of industrial fluorosis
The bone radiographs of 43 potroom workers in an aluminium factory, on whom the diagnosis of industrial fluorosis had been confirmed by bone biopsy, are compared with radiographs from 18 control subjects. A higher frequency of ossification of ligament, tendon, and muscle attachments is observed among the fluoride exposed subjects.
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Gastrointestinal Problems Among Individuals with Skeletal Fluorosis
Humans suffering from skeletal fluorosis are known to suffer from an increased occurrence of gastrointestinal disorders. When fluoride intake is reduced, these gastrointestinal problems are among the first symptoms to disappear. The following are some of the studies that have examined this issue: "It is clear from the observations presented in this article
-
Fluoride & Osteopetrosis
One of the most common radiological findings in skeletal fluorosis is osteosclerosis - a hardening of bones with a blurring of the trabecular structure. In advanced cases, the osteosclerotic form of fluorosis may closely resemble the appearance of osteopetrosis, a "marble bone" disease in which the bones are dense, but fragile and prone to fracture.
Related FAN Content :
-