Abstract
The levels of sialic acid and glycosaminoglycans were explored in the sera of rabbit and human subjects who ingested fluoride and had clinical manifestation of fluorosis. Changes observed in the level of these chemical constituents in sera possibly reflect changes occurring in calcified and noncalcified tissues due to fluoride intoxication. The ratio of sialic acid content vs glycosaminoglycans revealed there was a 50% reduction in rabbit and human sera. The test is recommended for evaluating the prognosis of fluoride poisoning/fluorosis.
-
-
Circulating levels of sialic acid and glycosaminoglycans: a diagnostic test for ankylosing spondylitis
The circulating levels of sialic acid (N-acetylneuraminic acid) and glycosaminoglycans (GAGs) were measured in 69 patients with spinal disorders of orthopaedic interest (ankylosing spondylitis 17, osteofluorosis 6, idiopathic backache 10, osteoarthrosis 16, osteoporosis 20). The serum GAG levels showed no statistically significant change from control values in the five disorders
-
Effects of fluoride on the ultrastructure and expression of Type I collagen in rat hard tissue
Long-term excessive fluoride (F) intake disrupts the balance of bone deposition and remodeling activities and is linked to skeletal fluorosis. Type I collagen, which is responsible for bone stability and cell biological functions, can be damaged by excessive F ingestion. In this study, Sodium fluoride (NaF) was orally administrated to
-
Bone mineral structure after six years fluoride treatment investigated by backscattered electron imaging (BSEI) and small angle x-ray scattering (SAXS): a case report
NaF, a bone formation stimulating agent, is used for the treatment of osteoporosis. Controversy exists concerning the quality of the newly formed bone and the antifracture effectiveness. We report about a 70 years old woman, who had received 50 mg NaF/d for about 6 years. Calcium or Vit D supplements
-
Sodium fluoride induces changes on proteoglycans synthesized by avian osteoblasts in culture
The results reported here show that sodium fluoride (NaF) at low concentration (up to 10 microM) increased four times the proliferation rate of avian osteoblasts in culture. Also NaF increases, in a concentration dependent manner, 10 times the alkaline phosphatase activity. However, NaF decreased the incorporation of 35S-sulfate into proteoglycans
-
Multiple myeloma-like spinal MRI findings in skeletal fluorosis: an unusual presentation of fluoride toxicity in human
Endemic fluorosis is a worldwide environmental problem due to excessive fluoride, commonly due to increased drinking water fluoride levels but sometimes due to other sources such as food with high fluoride content. In India, 21 of the 35 states are known to have health problems associated with fluoride toxicity. The
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride Content of Tea
Tea, particularly tea drinks made with lower quality older leaves, contain high levels of fluoride. Because of these high levels, research has found that individuals who drink large amounts of tea can develop skeletal fluorosis -- a painful bone disease caused by excessive fluoride intake. Since skeletal fluorosis is often misdiagnosed by
-
Fluoride & Spondylosis; Spondylitis
Among individuals with skeletal fluorosis, the fluoride-induced changes to the spine, and the accompanying symptoms, can bear a close resemblance to spondylosis and spondylitis (as well as DISH). Spondylosis is a (non-inflammatory) degenerative disease of the spine marked by bony outgrowths (spurs) which can produce nerve cord compression. Spondylitis, by contrast, is an inflammatory form of arthritis that causes inflammation in the joints between the vertebrae. Whereas spondylosis is generally asymptomatic, spondylitis generally causes significant pain and stiffness in the spine.
Related FAN Content :
-