Abstract
A potentiometric method using a fluoride combination ion-selective electrode was validated and used to analyse 183 samples, including soft drinks, juices, nectars, juice drinks, concentrates, teas and infusions marketed in Portugal. The fluoride levels were higher in extract-based soft drinks, juice drinks and juice, with fluoride values of 0.86 ± 0.35, 0.40 ± 0.24 and 0.37 ± 0.11 mg/l, respectively. The lowest fluoride concentration was found in infusion samples (0.12 ± 0.01 mg/l), followed by teas and carbonated soft drinks with fluoride concentrations of 0.16 ± 0.12 and 0.18 ± 0.07 mg/l, respectively. Nectars, concentrates and juice-based drinks had similar fluoride concentrations of 0.33 ± 0.16, 0.29 ± 0.12 and 0.25 ± 0.14 mg/l, respectively. Thefluoride concentrations in all these samples would only contribute intakes below the acceptable daily intake (ADI = 0.05 mg kg body weight day), indicating that, individually, these beverages cannot induce fluoride toxicity in the population group of children.
-
-
Non-Endemic Skeletal Fluorosis: Causes And Associated Secondary Hyperparathyroidism (Case Report and Literature Review).
Highlights Fluorocarbon “huffing” is an under-appreciated cause of skeletal fluorosis (SF) We present a SF case with hyperparathyroidism, osteosclerosis, and osteomalacia SF may go undetected due to variation in symptoms, radiology, and biochemistry Dietary calcium, prior bone health, and skeletal F exposure influence SF features SF is common in
-
Fluoride intake from the consumption of refreshment drinks and natural juices.
Highlights Soft-drinks and juices (65) were analyzed by potentiometry. Tea-based beverages had the highest fluoride content. Fluoride intake does not lead to a risk in adult health. Consumption of these beverages by children should be moderated. Fluoride plays an important role in the prevention of dental decay and in the reduction
-
Evaluation of fluoride levels in commercially available tea in the United States.
The objective of this study was to compare fluoride levels in commercially available black tea, green tea, and matcha tea. Tea samples were purchased from a local supermarket in the United States and prepared according to the manufacturer's directions to mimic consumer activity. The selected products included 3 black teas
-
Tealeaves may release or absorb fluoride, depending on the fluoride content of water.
As the tea plant (Camellia sinensis) is known to accumulate fluoride from the soil, the tealeaves may contain high concentrations of fluoride, which is easily released during infusion. In this study, we have tested the possible effect of original fluoride concentration in the water on the fluoride release from tea.
-
A case of thick but brittle bones and instant tea
CASE DESCRIPTION A 45-year-old white male was found to have radiographic findings of a diffusely dense appendicular skeleton, mild trabecular thickening, and multiple thoracic compression fractures indicating structural weakness. Bone mineral density was above the expected range for his age on the lumbar spine and femoral neck. Social history was significant
Related Studies :
-
-
-
Exposure Pathways Linked to Skeletal Fluorosis
Excessive fluoride exposure from any source -- and from all sources combined -- can cause skeletal fluorosis. Some exposure pathways , however, have been specifically identified as placing individuals at risk of skeletal fluorosis. These exposure pathways include: Fluoridated Water for Kidney Patients Excessive Tea Consumption High-Fluoride Well Water Industrial Fluoride Exposure Fluorinated Pharmaceuticals (Voriconazole
-
Skeletal Fluorosis in the U.S.
Although there has been a notable absence of systematic studies on skeletal fluorosis in the U.S., the available evidence indicates that the consumption of artificially fluoridated water is likely to cause skeletal fluorosis and other forms of bone disease in people with kidney disease and other vulnerable populations.
-
Tea Intake Is a Risk Factor for Skeletal Fluorosis
A number of recent studies have found that heavy tea drinkers can develop skeletal fluorosis - a bone disease caused by excessive intake of fluoride.
-
Estimated "Threshold" Doses for Skeletal Fluorosis
For over 40 years health authorities stated that in order to develop crippling skeletal fluorosis, one would need to ingest between 20 and 80 mg of fluoride per day for at least 10 or 20 years. This belief, however, which played an instrumental role in shaping current fluoride policies, is now acknowledged by the National Academy of Sciences (NAS) and other US health authorities to be incorrect.
-
The Lancet: Fluoride Studies in a Patient with Arthritis
It is possible that fluoride intake from tea may be sufficient to cause fluorosis, and I report here a case which gives some evidence for this.
Related FAN Content :
-