Abstract
Bone mineral density (BMD) of the spine and femoral neck was measured in a random stratified sample of 3222 perimenopausal women aged 47-59 years. A total of 969 women had used fluoridated drinking water (1.0-1.2 mg/l) for over 10 years. These women were compared with 2253 women with low levels of fluoride in drinking water (< 0.3 mg/l). BMD of the spine was significantly higher in the fluoride group than in the non-fluoride group (1.138 +/- 0.165 vs. 1.123 +/- 0.156 g/cm2, P = 0.026). Femoral neck BMDs did not differ between the groups. When the BMD values were adjusted for confounding factors (age, weight, menopausal status, calcium intake, physical activity level, deliveries, alcohol consumption and estrogen use), the differences between the groups increased (P < 0.001 for the spine and P = 0.004 for the femoral neck, respectively). There was no significant difference between the groups in the prevalence of self-reported fractures sustained during 1980-1989. We propose that the fluoridation of drinking water has a slight increasing effect on axial BMD in women in low fluoride areas.
-
-
Long-term fluoride therapy of postmenopausal osteoporosis
The benefit of sodium fluoride (NaF) in the therapy of osteoporosis is still controversial. For 3 years we monitored patients with postmenopausal osteoporosis subjected to a continuous treatment with 80 mg NaF/day and patients without fluoride treatment. Every 3 months peripheral total and trabecular bone densities were evaluated with high-precision
-
Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats
Fluoride is an essential trace element for the maintenance of bone health owing to its capacity to stimulate proliferation and osteoblastic activity that can lead to increased bone formation. However, excessive sodium fluoride (NaF) intake can impair carbohydrate metabolism thereby promoting hyperglycemia, insulin resistance, and changes in insulin signaling. Thus,
-
Association between low-to-moderate fluoride exposure and bone mineral density in Chinese adults: Non-negligible role of RUNX2 promoter methylation.
Highlights RUNX2 promotor methylation is positively related to excessive fluoride (F) exposure. Bone mineral density (BMD) is negatively related to excessive F exposure in women. BMD is negatively associated with RUNX2 promotor methylation in women. RUNX2 methylation mediates the association of excessive F exposure and BMD in women. Bone mineral density
-
Associations of fluoride intake with children's cortical bone mineral and strength measures at age 11.
OBJECTIVES: There is strong affinity between fluoride and calcium, and mineralized tissues. Investigations of fluoride and bone health during childhood and adolescence show inconsistent results. This analysis assessed associations between period-specific and cumulative fluoride intakes from birth to age 11, and age 11 cortical bone measures obtained using peripheral quantitative
-
The effect of water fluoridation on the bone mineral density of young women
INTRODUCTION: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). METHODS: BMD was measured in
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
Related FAN Content :
-