Abstract
Having analyzed a total amount of all systems, the authors specified the most important genetic markers predisposing to chronic flour intoxication: the patients demonstrated higher frequency of ACP1*A and PGM1*1-alleles, phenotypes of acid phosphatase AA, of phosphoglucomutase 1+1+ and 2+2+, of dry cerumen consistence–d. The results could help to improve criteria of occupational selection and to specify practical recommendations on prophylaxis of chronic fluor intoxication.
-
-
Fluoride's effects on the formation of teeth and bones, and the influence of genetics.
Fluorides are present in the environment. Excessive systemic exposure to fluorides can lead to disturbances of bone homeostasis (skeletal fluorosis) and enamel development (dental/enamel fluorosis). The severity of dental fluorosis is also dependent upon fluoride dose and the timing and duration of fluoride exposure. Fluoride's actions on bone cells predominate
-
A case of bone fluorosis of undetermined origin
After predominant theories on the causes of fluorosis are described and remarks made about the metabolism of fluoride, an observation of bone fluorosis in a 64-year-old patient is reported. Because, despite painstaking research, none of the known causes of bone fluorosis could be found in our patient, a new pathomechanism is being offered for discussion, i.e.,
-
Matrix metallopeptidase-2 gene rs2287074 polymorphism is associated with brick tea skeletal fluorosis in Tibetans and Kazaks, China.
Brick tea skeletal fluorosis is still a public health issue in the north-western area of China. However its pathogenesis remains unknown. Our previous study reveals that the severity of skeletal fluorosis in Tibetans is more serious than that in Kazaks, although they have similar fluoride exposure, suggesting the onset of
-
Comparison of two village primary schools in northern Tanzania affected by fluorosis
High fluoride levels in drinking water sources are a problem throughout the East African Rift Valley and can lead to dental fluorosis (DF) and skeletal fluorosis (SF) in exposed local populations. Two villages in the Hai District of northern Tanzania in which fluoride has been identified as a problem were
-
Aberrant DNA methylation of Cyclind-CDK4-p21 is associated with chronic fluoride poisoning.
Endemic fluorosis is a serious problem in public health, affecting thousands of people. Abnormal proliferation and activation of osteoblasts in skeletal fluorosis lesions play a leading role and osteoblast proliferation is finely regulated by the cell cycle. There are a few reports on fluoride-induced DNA methylation. However, the role of
Related Studies :
-
-
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
Related FAN Content :
-