Abstract
With growing experience of the long-term treatment of patients with end stage renal disease by hemodialysis, the safety of fluoridated water supply for dialysate and the effect on the bone metabolism has been discussed.
In this study, concentrations of fluoride (F), calcium (Ga). aluminum (AI) and biochemical indices of bone metabolism, such as bone gla protein (BGP), parathyroid hormone (PTH), alkaline phosphatase (ALP) in serum, and the bone mineral density of both radius (radial-BD) and lumbar spine (spinal-BD) were analyzed in 95 patients (45 males and 50 females) with hemodialysis to clarify the combined effects of F concentration and treatment of hemodialysis on the bone metabolism in those patients.
Serum F, BOP, and PTH in the patients with hemodialysis were significantly higher than those in healthy subjects. Although radial-BD decreased with duration of hemodialysis in both male and female patients, spinal-BD did not parallel to the changes in radial·BD. In the correlation matrices of the observation items in the patients. the pairs of items having a good correlation coefficient were F and BGP, F and spinal-BD, BGP and PTH in male subjects. and F and ALP, BGP and PTH in female patients.
From these results. it was suggested that absorbed F strongly affected the metabolism of bone, especially cancellous bone in the patients with long-term hemodialysis.
-
-
Renal osteodystrophy in patients on long-term hemodialysis with fluoridated water
Serum and bone fluoride concentrations of ten patients maintained on long-term hemodialysis with fluoridated water (1 ppm, i.e., 50uM) were correlated with duration of treatment and the occurrence of clinical, radiological, and histological manifestations of bone disease. Two patients had symptomatic renal osteodystrophy when accepted on the program, whereas six
-
Serum ionic fluoride levels in haemodialysis and continuous ambulatory peritoneal dialysis patients
High serum fluoride (F-) in patients with chronic renal failure (CRF) and end-stage renal disease (ESRD) is associated with risk of renal osteodystrophy and other bone changes. This study was done to determine F- in normal healthy controls and patients with ESRD on haemodialysis (HD) or peritoneal dialysis (PD). Seventeen
-
Serum and urine fluoride concentration: relationships to age, sex and renal function in a non-fluoridated population
Serum and urine fluoride levels were determined in 250 healthy subjects (15-90 years, 122 men and 128 women) residing in Catalonia, Spain, and in 150 patients (20-81 years, 84 men and 66 women) with chronic renal failure undergoing regular dialysis treatment, living in the same geographical area, to determine normal
-
High fluoride concentrations in the serum and bone of patients with chronic renal failure
The aim was to study the effect of ingested fluoride in patients with chronic renal failure (CRF). Serum fluoride concentrations were measured in 104 subjects, who formed three groups: nondialyzed CRF, dialyzed CRF, and a control group. The iliac bone fluoride was measured in 20 subjects. Serum, urine and water
-
The effect of hemodialysis upon serum levels of fluoride
Serum and dialysate ionic fluoride (F-) were determined in 29 patients under hemodialysis (HD) treatment. Serum creatinine (Cr), blood urea nitrogen (BUN) and phosphorus (P) were also examined before and after HD in 92 patients including the above 29 patients under the same treatment. Results reveal that serum F- levels
Related Studies :
-
-
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
Exposure Pathways Linked to Skeletal Fluorosis
Excessive fluoride exposure from any source -- and from all sources combined -- can cause skeletal fluorosis. Some exposure pathways , however, have been specifically identified as placing individuals at risk of skeletal fluorosis. These exposure pathways include: Fluoridated Water for Kidney Patients Excessive Tea Consumption High-Fluoride Well Water Industrial Fluoride Exposure Fluorinated Pharmaceuticals (Voriconazole
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Annapolis: Water Fluoridation Linked to Death of Dialysis Patient
EVENING CAPITAL (Annapolis, Maryland) November 29, 1979 Fluoride Linked to Death by Mary Ann Kryzankowicz Staff Writer Fluoride poisoning has been definitely linked to the death of a 65-year-old kidney dialysis patient who became ill during a blood cleaning process Nov 11. State Medical Examiner Dr. (illegible) Guard has ruled that Lawrence Blake, 65, of Arundel
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
Related FAN Content :
-