Abstract
In an area with non-fluoridated water (F content, 0.061 ppm), serum fluoride concentrations as measured with an ion specific electrode were as follows: controls (N = 13), 0.0127 ppm + 0.0057 (mean + SD); renal insufficiency (N = 10), 0.0452 ppm + 0.0151; chronic hemodialysis (N = 11), 0.0424 + 0.0343. The concentration in renal patients is about one-third of the one observed during F treatment for osteoporosis; it might therefore influence bone turnover. Fluoridated salt, tooth preparations and black tea were the main F sources in the patients studied.
-
-
Long-term follow up of ionic plasma fluoride level in patients receiving hemodialysis treatment
The elimination half-life of fluoride is significantly increased in patients with chronic renal failure. This led us to conduct a study of variations of its plasma levels in 35 patients receiving dialysis treatment. In this population, there is a gaussian distribution of the values before and after the hemodialysis session,
-
Serum ionic fluoride levels in haemodialysis and continuous ambulatory peritoneal dialysis patients
High serum fluoride (F-) in patients with chronic renal failure (CRF) and end-stage renal disease (ESRD) is associated with risk of renal osteodystrophy and other bone changes. This study was done to determine F- in normal healthy controls and patients with ESRD on haemodialysis (HD) or peritoneal dialysis (PD). Seventeen
-
Exposure to excessive fluoride during hemodialysis
Discussion These data indicate that a patient maintained by hemodialysis in a community using fluoridated water may be exposed to a fluoride concentration higher than that present in tap water if the deionizer is allowed to become exhausted while the patient is being dialyzed. The concentration reached 520 uM in the
-
The effect of hemodialysis upon serum levels of fluoride
Serum and dialysate ionic fluoride (F-) were determined in 29 patients under hemodialysis (HD) treatment. Serum creatinine (Cr), blood urea nitrogen (BUN) and phosphorus (P) were also examined before and after HD in 92 patients including the above 29 patients under the same treatment. Results reveal that serum F- levels
-
High fluoride concentrations in the serum and bone of patients with chronic renal failure
The aim was to study the effect of ingested fluoride in patients with chronic renal failure (CRF). Serum fluoride concentrations were measured in 104 subjects, who formed three groups: nondialyzed CRF, dialyzed CRF, and a control group. The iliac bone fluoride was measured in 20 subjects. Serum, urine and water
Related Studies :
-
-
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
Exposure Pathways Linked to Skeletal Fluorosis
Excessive fluoride exposure from any source -- and from all sources combined -- can cause skeletal fluorosis. Some exposure pathways , however, have been specifically identified as placing individuals at risk of skeletal fluorosis. These exposure pathways include: Fluoridated Water for Kidney Patients Excessive Tea Consumption High-Fluoride Well Water Industrial Fluoride Exposure Fluorinated Pharmaceuticals (Voriconazole
-
Skeletal Fluorosis in the U.S.
Although there has been a notable absence of systematic studies on skeletal fluorosis in the U.S., the available evidence indicates that the consumption of artificially fluoridated water is likely to cause skeletal fluorosis and other forms of bone disease in people with kidney disease and other vulnerable populations.
-
Tea Intake Is a Risk Factor for Skeletal Fluorosis
A number of recent studies have found that heavy tea drinkers can develop skeletal fluorosis - a bone disease caused by excessive intake of fluoride.
-
Estimated "Threshold" Doses for Skeletal Fluorosis
For over 40 years health authorities stated that in order to develop crippling skeletal fluorosis, one would need to ingest between 20 and 80 mg of fluoride per day for at least 10 or 20 years. This belief, however, which played an instrumental role in shaping current fluoride policies, is now acknowledged by the National Academy of Sciences (NAS) and other US health authorities to be incorrect.
Related FAN Content :
-