Abstract
The present study was conducted on 42 postmenopausal women subjects in Vailapally village, Nalgonda district, Andhra Pradesh, India, an endemic fluorotic area (water fluoride >4 ppm) and 34 postmenopausal women of nonfluorotic villages (water fluoride <0.4 ppm) of the Nalgonda area. The age group of the recruited subjects was 48–58 years and their years since menopause (YSM) was <10 years. Serum levels of fluoride (F), total alkaline phosphatase (ALP), tartarate resistant acid phosphatase-5b (TRAP-5b), catalase (CAT), glutathione-S-transferase (GST) and malondialdehyde (MDA) were estimated for bone mineral antioxidant and lipid peroxidation status. Significantly increased bone turnover markers ALP, TRAP-5b (p<0.01), and oxidative stress were observed with decreased levels of CAT and GST (p<0.01) activity in postmenopausal women residing in the fluorotic village. Significantly elevated levels of MDA (p<0.01) in these women compared to those in the nonfluorotic village indicated an increase in lipid peroxidation under fluoride stress.
-
-
Biphasic Functions of Sodium Fluoride (NaF) in Soft and in Hard Periodontal Tissues.
Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts,
-
WITHDRAWN: Co-exposure effects of arsenic and fluoride on intelligence and oxidative stress in school-aged children: a cohort study.
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. as of November 6, 2020 Highlights Pioneer biomonitoring study on rural children to address As and F- co-exposure. High dental Fluorosis found in relation to urinary As and F- levels in
-
Effect of sodium fluoride in maternal and offspring rats and its amelioration
High fluoride content is known to cause dental and skeletal abnormalities. In addition, present review indicates that sodium fluoride consumption caused increased number of resorptions and dead foetuses. Various skeletal anomalies such as wavy ribs, presence of 14th ribs, lacking 6th sternebrae and incomplete ossification of skull occur. All these
-
Fluoride in Drinking Water and Skeletal Fluorosis: a Review of the Global Impact.
When safe and adequate exposure of an essential trace element is exceeded it becomes potentially toxic. Fluoride is one classic example of such a double edged sword which both plays a fundamental role in the normal growth and development of the body for example the consumption of levels between 0.5–1.0 ppm
-
Fluorosilicic acid induces DNA damage and oxidative stress in bone marrow mesenchymal stem cells.
Highlights Fluorosilicic acid is the most used additive for water fluoridation. Dental fluorosis can be caused by fluorosilicic acid present in drinking water. DNA damage was caused by fluorosilicic acid in mesenchymal stem cells. Fluorosilicic acid altered bone mineralization in mesenchymal stem cells. DNA damage caused by fluorosilicic acid
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
Related FAN Content :
-