Abstract
1. Fifty six aluminum smelter workers with 10 to 43 years’ occupational exposure, and who had been previously studied medically, were re-x-rayed. Average urinary fluoride concentrations since 1960 were estimated to range from 2.78 mg/liter preshift and 7.71 mg/liter postshift. 2. Roentgenographic studies in 1960-66 and 1974 failed to reveal any evidence of fluoride associated bony change. 3. Although these workers represent a self-selected group, their magnitude and duration of exposure far outweighs any other group working at present or in the past at this plant. The implication that they have uniformly self-selected as fluoride resistant individuals is improbable. 4. These data indicate that group post-shift ur a long period is not associated with enhanced risk of bony fluorosis. If preshift urinary fluoride concentrations are less than 4 mg/l, the same results appears to apply.
-
-
Skeletal fluorosis in a resettled refugee from Kakuma refugee camp.
“I suspected some contamination of the water of the much-frequented street pump in Broad Street, near the end of Cambridge Street”, said John Snow, about the contaminated water pump of the cholera outbreak of 1854, in London, UK.1 In September, 2015, a Somalian man aged 46 years presented to a refugee
-
FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China.
Skeletal fluorosis is a metabolic bone and joint disease caused by excessive accumulation of fluoride in the bones. Compared with Kazakhs, Tibetans are more likely to develop moderate and severe brick tea type skeletal fluorosis, although they have similar fluoride exposure. Single nucleotide polymorphisms (SNPs) in frizzled-related protein (FRZB) have
-
A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China
OBJECTIVE: To assess the effects of provided fluoride-safe drinking-water for the prevention and control of endemic fluorosis in China. DESIGN: A national cross-sectional study in China. SETTING: In 1985, randomly selected villages in 27 provinces (or cities and municipalities) in 5 geographic areas all over China. PARTICIPANTS: Involved 81 786 children aged from
-
Skeletal fluorosis from brewed tea
BACKGROUND: High fluoride ion (F(-)) levels are found in many surface and well waters. Drinking F(-)-contaminated water typically explains endemic skeletal fluorosis (SF). In some regions of Asia, however, poor quality "brick tea" also causes this disorder. The plant source of brick, black, green, orange pekoe, and oolong tea, Camellia
-
Skeletal fluorosis from brewed tea.
BACKGROUND: High fluoride ion (F(-)) levels are found in many surface and well waters. Drinking F(-)-contaminated water typically explains endemic skeletal fluorosis (SF). In some regions of Asia, however, poor quality "brick tea" also causes this disorder. The plant source of brick, black, green, orange pekoe, and oolong tea, Camellia
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Gastrointestinal Problems Among Individuals with Skeletal Fluorosis
Humans suffering from skeletal fluorosis are known to suffer from an increased occurrence of gastrointestinal disorders. When fluoride intake is reduced, these gastrointestinal problems are among the first symptoms to disappear. The following are some of the studies that have examined this issue: "It is clear from the observations presented in this article
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
Related FAN Content :
-