Abstract
In three different areas of Finland, fluoride in bone and its effect on the histomorphometry of trabecular bone was studied. Bone samples were taken from cadavers from a low-fluoride area (fluoride concentration under 0.3 ppm), an area with fluoridated drinking water (1.0-1.2 ppm) and a high-fluoride area (over 1.5 ppm). The fluoride content in trabecular bone was greatly increased in the high-fluoride area, and it was also higher in the fluoridated-water area than in the low-fluoride area. Histomorphometric bone changes were markedly increased when the fluoride content in water exceeded 1.5 ppm.
Excerpt:
The main histolological change induced by fluoride is the increase of osteoid volume… This increase in osteoid parameters was observed in our study already at fluoride concentrations above 1.5 ppm. . . . Fluoridation of drinking water up to 1.2 ppm apparently does not pose a potential risk to bone provided the renal function is normal. . . . We should, however, recognize that it is difficult to give a strict value for a safe fluoride concentration in drinking water, because individual susceptibility to fluoride varies.
-
-
Association between fluoride, magnesium, aluminum and bone quality in renal osteodystrophy
INTRODUCTION: Trace elements are known to influence bone metabolism; however, their effects may be exacerbated in renal failure because dialysis patients are unable to excrete excess elements properly. Our study correlated bone quality in dialysis patients with levels of bone fluoride, magnesium, and aluminum. A number of studies have linked
-
Hip fracture incidence not affected by fluoridation. Osteofluorosis studied in Finland
Iliac crest biopsies were taken from patients with hip fracture from a low-fluoride area (less than 0.3 ppm), from an area with fluoridated drinking water (1.0-1.2 ppm), and from a high-fluoride area (greater than 1.5 ppm). Fluoride content analysis and histomorphometry of bone were performed. The hip fracture incidence during
-
Osteomalacia is associated with high bone fluoride content in dialysis patients
Osteomalacia is now rarely observed in hemodialyzed patients since the prevention of aluminum intoxication and vitamin D deficiency. However, this disorder is still present and may be responsible for bone fractures. Fluoride overload is responsible for mineralization defects. We therefore prospectively measured the bone fluoride content in all dialysis osteomalacic
-
Fluoride and strontium accumulation in bone does not correlate with osteoid tissue in dialysis patients
BACKGROUND: Osteomalacia is now a rare disease in dialysis patients in developed countries since the withdrawal of aluminium overload. The involvement of fluoride and strontium in the pathogenesis of the disease has been suggested. The aim of this study was to investigate a possible association between osteomalacia in dialysis patients
-
The effect of fluoride on bone
Conclusions Although it is well known that the ingestion of high levels of fluoride can give rise to severe lesions in the skeletal tissues, such effects have never been found radiographically in persons using a water supply, containing less than 4 p.p.m fluorlde throughout life. A histological study of thirty ribs taken
Related Studies :
-
-
-
Similarities between Skeletal Fluorosis and Renal Osteodystrophy
It is quite possible, and indeed likely, that some kidney patients diagnosed with renal osteodystrophy are either suffering from skeletal fluorosis or their condition is being complicated/exacerbated by fluoride exposure.
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
-
Unheeded Warnings: Government Health Authorities Ignore Fluoride Risk for Kidney Patients
Despite the well known fact that individuals with kidney disease are at much higher risk of fluoride toxicity than the general population, there has yet to be any attempt in the United States, or any other country that practices mass-scale water fluoridation to determine the prevalence of fluoride-related effects (e.g.,
-
Fluoride Increases Osteoid Content of Bone
Fluoride's ability to increase the osteoid content of bone is now undisputed. Osteoid is an unmineralized tissue in bone that, in the normal bone remodeling process, ultimately becomes calcified. As some observers have noted, "[t]he main histological change induced by fluoride is the increase of osteoid volume." (Arnala 1985). One way fluoride
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
Related FAN Content :
-