Abstract
The femurs from rats given 120 ppm fluoride in their drinking water for 4 weeks were examined with histological, histochemical, and radiographic methods. Blood removed from the rats prior to sacrifice was analyzed for calcium, phosphorus, and alkaline phosphatase. Results of this study indicated that the ingestion of fluoride produced wide osteoid seams on the periosteal surface of the femoral diaphysis within 4 weeks. The increase in osteoid appeared to be due to an increase in the number of osteoid-producing cells (osteoblasts) along with a subsequent delay in the mineralization of this tissue. The metabolic activity of osteoblasts did not appear to be affected since the intracellular production of acid and alkaline phosphatase was not inhibited. However, due to the high concentration of fluoride ingested, abnormal collagen deposition and a change in bone mineral may have combined to cause a delay in osteoid mineralization. Mineralization was also delayed in the distal femoral epiphyseal plate resulting in an increase in the number of hypertrophied cells. Resorption of metaphyseal trabecular bone, presumably formed prior to fluoride administration, was increased causing a reduction in the amount of trabeculae extending into the shaft of the femur. Concurrent with these changes in bone, the serum levels of calcium, phosphorus, and alkaline phosphatase remained within normal ranges.
-
-
Effects of fluoride on cortical bone remodeling in the growing domestic pig
The purpose of the experiment was to assess the effects of fluoride (F-) on the remodeling process of cortical bone. Sixteen pigs, eight experimental animals receiving a supplement of 2 mg F-/kg b.w. and eight controls, were studied in individual sites from age 8 to 14 months. At slaughter samples
-
Effect of fluoride on aluminum-induced bone disease in rats with renal failure
Aluminum (Al) accumulation in renal failure is an etiological factor in the pathogenesis of low turnover bone disease. Aluminum-induced impairment of mineralization has been related to a reduced extent of active bone-forming surface. The present study investigated the effect of fluoride, a potent stimulator of osteoblast number, on the toxicity
-
Histopathological assessment of endemic skeletal fluorosis
Nine patients with skeletal fluorosis were subjected to iliac crest biopsy because they presented with stiffness and bone pains. The histopathological findings are correlated with the clinical course, X-ray and laboratory data. All but one of the patients showed an increase in bone surfaces lined by osteoid and in these
-
Short-term effects of fluoride and strontium on bone formation and resorption in the mouse
The early effects of sodium fluoride (0.80 mg/kg/d) and strontium chloride (0.27%) given alone, or in combination in drinking water, on bone metabolism were examined in the mouse using dynamic histomorphometric methods. Four weeks of oral strontium supplementation increased the osteoid surface and reduced the number of acid phosphatase-stained osteoclasts.
-
Effects of different regimens of sodium fluoride treatment for osteoporosis on the structure, remodeling and mineralization of bone.
We compared initial and final bone histomorphometric findings in 66 osteoporotic patients treated with sodium fluoride (NaF) according to three regimens, and in 7 osteoporotic patients who did not receive NaF. Fourteen patients received continuous NaF 75 mg/day (high-dose) with calcium 1500 mg/day for a mean of 41 months. Twenty-six
Related Studies :
-
-
-
Fluoride's Effect on Osteoblasts (Bone-Forming Cells)
As noted by the National Research Council, "[p]erhaps the single clearest effect of fluoride on the skeleton is its stimulation of osteoblast proliferation." (NRC 2006). Osteoblasts are bone-forming cells. "Stimulatory effects of fluoride on osteoblasts result in formation of osteoid, which subsequently undergoes mineralization." (Fisher RL, et al. 1989). If the new
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
-
Fluoride & Osteoclasts
It is well established that fluoride exposure can increase bone formation by increasing the proliferation of osteoblasts. Less clear is fluoride's impact on bone resorption and the cells (osteoclasts) that resorb bone. Many have assumed that fluoride's main effect on bone resorption and osteoclasts is an inhibitory one (i.e., less
-
Fluoride Increases Osteoid Content of Bone
Fluoride's ability to increase the osteoid content of bone is now undisputed. Osteoid is an unmineralized tissue in bone that, in the normal bone remodeling process, ultimately becomes calcified. As some observers have noted, "[t]he main histological change induced by fluoride is the increase of osteoid volume." (Arnala 1985). One way fluoride
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
Related FAN Content :
-