Abstract
Fluoride stimulates trabecular bone formation, whereas bisphosphonates reduce bone resorption and turnover. Fracture prevention has not been convincingly demonstrated for either treatment so far. We compared the effects of 1-yr treatment of 9-mo-old minipigs with sodium fluoride (NaF, 2 mg/kg/d p.o.) or alendronate (ALN, 4 amino-1-hydroxybutylidene bisphosphonate monosodium, 1 mg/kg/d p.o.) on the biomechanical and histomorphometric properties of pig bones. As expected, NaF increased and ALN decreased bone turnover, but in these normal animals neither changed mean bone volume. NaF reduced the strength of cancellous bone from the L4 vertebra, relative to control animals, and the stiffness (resistance to deformation) of the femora, relative to the ALN group. In the ALN-treated animals, there was a strong positive correlation between bone strength and L5 cancellous bone volume, but no such correlation was observed in the NaF group. Furthermore, the modulus (resistance to deformation of the tissue) was inversely related to NaF content and there was a relative decrease in bone strength above 0.25 mg NaF/g bone. Moreover, within the range of changes measured in this study, there was an inverse correlation between bone turnover, estimated as the percentage of osteoid surface, and modulus. These findings have relevant implications regarding the use of these agents for osteoporosis therapy.
-
-
Short-term effects of fluoride and strontium on bone formation and resorption in the mouse
The early effects of sodium fluoride (0.80 mg/kg/d) and strontium chloride (0.27%) given alone, or in combination in drinking water, on bone metabolism were examined in the mouse using dynamic histomorphometric methods. Four weeks of oral strontium supplementation increased the osteoid surface and reduced the number of acid phosphatase-stained osteoclasts.
-
The role of ions and mineral-organic interfacial bonding on the compressive properties of cortical bone
Bone tissue is a composite material composed of an inorganic stiff mineral phase embedded in a compliant organic matrix. Similar to other composites, the mechanical properties of bone depend upon the properties, volume fraction, and orientation of its constituents as well as the bonding interactions. Interfacial bonding between the mineral
-
Bone response to fluoride exposure is influenced by genetics
Genetic factors influence the effects of fluoride (F) on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone
-
Osteoporosis Treatments Affect Bone Matrix Maturation in a Rat Model of Induced Cortical Remodeling.
The example of sodium fluoride (NaF) clearly demonstrates an instance where increasing bone mass while altering maturation can negatively affect drug efficacy. NaF was a promising osteoporosis treatment because it increased BMD.5 However, it became evident that the treated patients were at increased risk of fracture,6, 7 which was later
-
The effect of in vitro fluoride ion treatment on the ultrasonic properties of cortical bone
The mechanical properties of composites are influenced, in part, by the volume fraction, orientation, constituent mechanical properties, and interfacial bonding. Cortical bone tissue represents a short-fibered biological composite where the hydroxyapatite phase is embedded in an organic matrix composed of type I collagen and other noncollagenous proteins. Destructive mechanical testing
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Skeletal Fluorosis Causes Bones to be Brittle & Prone to Fracture
It has been known since as the early as the 1930s that patients with skeletal fluorosis have bone that is more brittle and prone to fracture. More recently, however, researchers have found that fluoride can reduce bone strength before the onset of skeletal fluorosis. Included below are some of the
-
Fluoride Increases Osteoid Content of Bone
Fluoride's ability to increase the osteoid content of bone is now undisputed. Osteoid is an unmineralized tissue in bone that, in the normal bone remodeling process, ultimately becomes calcified. As some observers have noted, "[t]he main histological change induced by fluoride is the increase of osteoid volume." (Arnala 1985). One way fluoride
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
Related FAN Content :
-