Abstract
The role of fluoride in aluminium neurotoxicity was studied using an in vitro system of cultured hippocampal neurons from foetal rats. Sodium fluoride (50 microM) and aluminium chloride (12.5 microM) were administered alone or in a specific combination (50 + 12.5 microM) in a 14-day culture in a chemically defined medium before staining of neurofilaments. Neuronal aggregates interconnected by neuritic fibers were detected light microscopically in control cultures. The aggregates and the fibers stained positive for neurofilament proteins. In cultures treated with aluminium chloride the development of the interconnecting fibers was affected, resulting in a fusion pattern of the aggregates. This phenomenon was enhanced when sodium fluoride was given together with aluminum chloride. It was concluded that aluminium interferes with the metabolism of the neuronal cytoskeleton and that this interference is potentiated by fluoride.
-
-
Pathologic changes and effect on the learning and memory ability in rats exposed to fluoride and aluminum
Background: The aim of this study is to establish a single and combined intoxication model of fluoride and aluminum so as to observe the impact of these chemicals on the learning and memory ability and the pathologic changes in brain of rats. Methods: Forty male Wistar rats were randomly assigned
-
Chronic AIF3 Administration: II. Selected Historical Observations.
Male Long-Evans rats were divided into four groups based on the concentrations of the AlF3 in the drinking water: 0.5 ppm, 5.0 ppm, 50 ppm, or a control solution of double-distilled, de-ionized water. Water was available ad libitum for 45 weeks. Following the behavioral studies, histological, immunohistochemical, and overall brain
-
MiR-132, miR-204 and BDNF-TrkB signaling pathway may be involved in spatial learning and memory.
Highlights Spatial learning and memory of offspring rats were impaired after exposure to fluorine combined with aluminium(FA). Hippocampal miR-132 and miR-204 were increased after FA exposure. Hippocampal BDNF-TrkB signaling pathway was down-regulated after FA exposure. There were antagonistic effects between F and Al, with Al reducing the toxicity of F. Fluorine
-
Chronic Fluoride Exposure and the Risk of Autism Spectrum Disorder.
The continuous rise of autism spectrum disorder (ASD) prevalent in the past few decades is causing an increase in public health and socioeconomic concern. A consensus suggests the involvement of both genetic and environmental factors in the ASD etiopathogenesis. Fluoride (F) is rarely recognized among the environmental risk factors of
-
Buffalo (Bubalus bubalis) epiphyseal proteins give protection from arsenic and fluoride-induced adverse changes in acetylcholinesterase activity in rats
The objective of this study was to determine the effect of fluoride (F) and arsenic (As) on the activity of acetylcholinesterase (AChE), a critically important nervous system enzyme, and to test the protective role of buffalo epiphyseal (pineal) proteins (BEP) in rats. Arsenic (20 mg/kg BW, intraperitoneally) and F (150
Related Studies :
-
-
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
-
Fluoride & IQ: 67 Studies
As of May 2020, a total of 75 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 67 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
Related FAN Content :
-