Abstract
Objective: Study the mechanism of action chronic fluorosis in neurones.
Methods: Terminal deoxyribo-nucleotide transferase-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) were used to observe changes of apoptosis in cerebral cells in chronic fluorosis in rats.
Results: TUNEL results show non-random expression of DAB positive stain apoptosis cells which appear only in the hippocampus CA4 region. FCM results show that the percentage of DNA fragmentation increased markedly in the cerebral neurones of rats with chronic fluorosis but not in different cerebral regions.
Conclusions: There is a tendency for neurone apoptosis in chronic fluorosis in rats. It is most evident with changes in pathology. It is not likely that only one form of neurone damage exist in the process of chronic fluorosis. There are recessive changes and apoptosis in the process at the same time.
-
-
[Studies on DNA damage and apoptosis in rat brain induced by fluoride].
OBJECTIVE: To explore the DNA damage effects and apoptosis in brain cells of rats induced by sodium fluoride. METHODS: SD rats were divided into two groups, i.e. control group and fluoride treated group, which were injected intraperitoneally with distilled water and sodium fluoride (20 mg.kg(-1).d(-1)) respectively. On the hand, 5
-
Studies on the DNA and RNA contents of heart, liver and kidney of rats with chronic fluorosis
17 rats with chronic fluorosis induced by prolonged drinking of water containing 50 ppm fluorine and 17 rats drinking low-fluorine water served as control were used to study the DNA and RNA contents of heart, liver and kidney. The findings suggest that excessive accumulation of fluorine can suppress the synthesis
-
Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: mechanisms of action in vitro and associations with cognition in rats and children.
Fluoride neurotoxicity is associated with mitochondrial disruption. Mitochondrial fission/fusion dynamics is crucial to maintain functional mitochondria, yet little is known about how fluoride perturbs this dynamics and whether such perturbation contributes to impaired neurodevelopment. Here in human neuroblastoma SH-SY5Y cells treated with sodium fluoride (NaF, 20, 40 and 60 mg/L), mitochondrial
-
[Effects of selenium and zinc on the DNA damage caused by fluoride in pallium neural cells of rats].
To investigate the effects of fluoride on DNA damage as well as the effects of selenium and zinc against fluoride respectively or jointly in pallium neural cells of rats, single cell gel electrophoresis was used to detect the DNA damage of neural cells prepared in vitro. The results showed that
-
Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons.
The mechanisms underlying the neurotoxicity of fluorosis still remain obscure. To investigate DNA damage, cell-cycle distribution and expression of nuclear factor kappa B (NF-kappaB) induced by fluoride, the primary rat hippocampal neurons were incubated with various concentrations (20mg/l, 40 mg/l, and 80 mg/l) of sodium fluoride for 24 h in
Related Studies :
-
-
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
Related FAN Content :
-