Abstract
Objective: Study the mechanism of action chronic fluorosis in neurones.
Methods: Terminal deoxyribo-nucleotide transferase-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) were used to observe changes of apoptosis in cerebral cells in chronic fluorosis in rats.
Results: TUNEL results show non-random expression of DAB positive stain apoptosis cells which appear only in the hippocampus CA4 region. FCM results show that the percentage of DNA fragmentation increased markedly in the cerebral neurones of rats with chronic fluorosis but not in different cerebral regions.
Conclusions: There is a tendency for neurone apoptosis in chronic fluorosis in rats. It is most evident with changes in pathology. It is not likely that only one form of neurone damage exist in the process of chronic fluorosis. There are recessive changes and apoptosis in the process at the same time.
-
-
[Studies on DNA damage and apoptosis in rat brain induced by fluoride].
OBJECTIVE: To explore the DNA damage effects and apoptosis in brain cells of rats induced by sodium fluoride. METHODS: SD rats were divided into two groups, i.e. control group and fluoride treated group, which were injected intraperitoneally with distilled water and sodium fluoride (20 mg.kg(-1).d(-1)) respectively. On the hand, 5
-
Fluoride Stimulates Anxiety- and Depression-like Behaviors Associated with SIK2-CRTC1 Signaling Dysfunction.
Using Sprague-Dawley rats and rat PC12 cells treated with sodium fluoride (NaF), we investigated the effects of SIK2-CRTC1 signaling on the neurobehavioral toxicity induced by fluoride. The in vivo results demonstrated that NaF treatment induced anxiety- and depression-like behaviors in juvenile rats, resulting in histological and ultrastructural abnormalities in the
-
Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons.
The mechanisms underlying the neurotoxicity of fluorosis still remain obscure. To investigate DNA damage, cell-cycle distribution and expression of nuclear factor kappa B (NF-kappaB) induced by fluoride, the primary rat hippocampal neurons were incubated with various concentrations (20mg/l, 40 mg/l, and 80 mg/l) of sodium fluoride for 24 h in
-
Effects of chronic fluorosis on the brain.
Highlights Reviewing the mechanism of brain injury caused by chronic fluorosis is of great significance for protecting residents in fluorosis endemic areas. Abstract This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury,
-
NaF-induced neurotoxicity via activation of the IL-1B/JNK signaling pathway.
Excessive fluoride exposure can induce neuron apoptosis that is associated with neurodegenerative changes, but the mechanisms remain elusive. It has been suggested that chronic fluoride-induced microglia activation contributes to neuronal damage by producing pro-inflammatory cytokines. IL-1B, a pro-inflammatory cytokine released by activated microglia, is capable of inducing JNK phosphorylation and
Related Studies :
-
-
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
Related FAN Content :
-