Abstract
A study was made of the effect of fluoride on oxidative stress in rats during their early stages in life. Wistar albino rats were exposed to 30 ppm and 100 ppm fluoride (from sodium fluoride) in drinking water during the last one week of intrauterine life and then up to ten weeks after birth. Oxidative stress was evaluated by the assays of malondialdehyde and antioxidants in brain homogenates. Malondialdehyde (MDA), the marker of extent of lipid peroxidation, was elevated in the brain of rats treated with 100 ppm fluoride but was without change in rats treated with 30 ppm fluoride. Levels of total glutathione, reduced glutathione (GSH), and ascorbic acid (vitamin C) were elevated in 30 ppm fluoride-treated rats, while these levels decreased in 100 ppm fluoride-treated rats. The activity of glutathione peroxidase (GSH-Px) was elevated significantly in both 30 ppm and 100 ppm fluoride-treated rats. Glutathione S-transferase (GST) activitiy in the brain increased with 30 ppm and 100 ppm fluoride, and greater elevation occurred at 30 ppm. These results suggest that fluoride enhances oxidative stress in the brain, thereby disturbing the antioxidant defense of rats. Increased oxidative stress could be one of the mediating factors in the pathogenesis of fluoride toxicity in the brain.
-
-
Effects of sodium fluoride on lipid peroxidation and PARP, XBP-1 expression in PC12 cell
This study aims to clarify the molecular mechanism of fluorine exposure that leads to nerve injury. PC12 cells were treated with fluorine at different concentrations (0.5, 1.0, 1.5, and 2.0 mM). Cytoactivity was detected at different time points (2, 4, 6, 8, 12, 24, and 48 h). After 2 h, DCF was used
-
Lipid peroxidation in fluorosis and the protective role of dietary factors
The influence of chronic Fl intoxication on lipid peroxidation and the state of the antioxidant system was studied in rats on different diets. Chronic Fl intoxication inhibited antioxidant activity and caused an increase in the rate of peroxidation and the level of lipoperoxides in liver, brain and serum. Diets with
-
Protective effect of resveratrol on fluoride induced alteration in protein and nucleic acid metabolism, DNA damage and biogenic amines in rat brain
Fluoride, a well-established environmental carcinogen, has been found to cause various neurodegenerative diseases in human. Sub-acute exposure to fluoride at a dose of 20mg/kgb.w./day for 30 days caused significant alteration in pro-oxidant/anti-oxidant status of brain tissue as reflected by perturbation of reduced glutathione content, increased lipid peroxidation, protein carbonylation, nitric
-
Neurobehavioral and neurochemical effects in rats offspring co-exposed to arsenic and fluoride during development.
Highlights Arsenic/Fluoride co-exposure during development causes neurobehavioral alterations in offspring. iAs/F causes delayed development of sensorimotor reflexes and produces less nociceptive response. iAs/F co-exposure increase locomotor activity. Antioxidant enzymes and neurotransmitter level are altered in the striatum area. Arsenic (iAs) and fluoride (F) are ubiquitous in the environment. All over
-
Attenuating effect of Vitamin E on the deficit of learning and memory of rats with chronic fluorosis: the mechanism may involve muscarinic acetylcholine receptors.
The protective role of vitamin E (Vit E) against neurotoxicity induced by fluorosis was investigated by using Sprague-Dawley (SD) rats fed with 50 ppm fluoride in drinking water for 10 months. Spatial learning and memory of rats were measured by the Morris water maze test; the expressions of M1 and
Related Studies :
-
-
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
Related FAN Content :
-