Abstract
Biochemical alterations in the brain produced during experimental fluorosis were studied. Albino rabbits of both sexes were administered sodium fluoride solutions in the concentrations of 5, 10, 20, and 50 mg/kg body wt/day by subcutaneous injection for 100 days. The control rabbits were given 1 cc distilled water/kg body weight/day for the same length of time. In fluoride treated rabbits the brain showed significant decline (P <0.001) in soluble, basic total protein and free amino acid levels. RNA content rapidly decreased (P <0.001) in the brains of experimental animals compared to the controls. However, in male animals treated with 5 and 10 mg fluoride no statistically significant differences in RNA content of brain were observed. The depletion of proteins produced degenerative changes in purkinje cells of the cerebellar cortex. These changes in the brain lead to paralysis of limbs in fluoridated animals.
-
-
Effect of sodium fluoride on neuroimmunological parameters, oxidative stress and antioxidative defenses
Aims: This study was designed to evaluate the effect of sodium fluoride (NaF) in inducing neuroimmunological, oxidative and antioxidative damage. Methods: Twenty-four male Wistar rats broadly grouped into four groups containing six rats in each were fed with drinking water containing 20 ppm, 60 ppm, 100 ppm and 0.8 ppm (control)
-
Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat
BACKGROUND: Sodium fluoride (NaF) intoxication is associated with oxidative stress and altered antioxidant defense mechanism. The present study was carried out to evaluate the potential protective role of blackberry and quercetin (Q) against NaF-induced oxidative stress and histological changes in liver, kidney, testis and brain tissues of rats. METHODS: The rats
-
Changes in learning and memory ability and brain cholinesterase activity in the rats with coal burning fluorosis.
Objective: To observe the influence of coal burning fluorosis on learning and memory ability in rats and reveal its possible mechanisms. Methods: Healthy 48 SD rats were divided into control, low-fluoride and high-fluoride group. All rats in fluoride exposed groups were fed with the eom polluted by drying processes with
-
Neuroprotective effect of ascorbic acid and ginkgo biloba against fluoride caused neurotoxicity
Excessive consumption of fluoride through drinking water or other sources lead to skeletal and dental fluorosis. According to the world health organization 23 nations are facing the problem of fluorosis. In the recent past researchers describe the non-skeletal fluorosis where soft tissues and major organs are the victims of fluoride
-
Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons.
The mechanisms underlying the neurotoxicity of fluorosis still remain obscure. To investigate DNA damage, cell-cycle distribution and expression of nuclear factor kappa B (NF-kappaB) induced by fluoride, the primary rat hippocampal neurons were incubated with various concentrations (20mg/l, 40 mg/l, and 80 mg/l) of sodium fluoride for 24 h in
Related Studies :
-
-
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride & IQ: 67 Studies
As of May 2020, a total of 75 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 67 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
Related FAN Content :
-