Abstract
Biochemical alterations in the brain produced during experimental fluorosis were studied. Albino rabbits of both sexes were administered sodium fluoride solutions in the concentrations of 5, 10, 20, and 50 mg/kg body wt/day by subcutaneous injection for 100 days. The control rabbits were given 1 cc distilled water/kg body weight/day for the same length of time. In fluoride treated rabbits the brain showed significant decline (P <0.001) in soluble, basic total protein and free amino acid levels. RNA content rapidly decreased (P <0.001) in the brains of experimental animals compared to the controls. However, in male animals treated with 5 and 10 mg fluoride no statistically significant differences in RNA content of brain were observed. The depletion of proteins produced degenerative changes in purkinje cells of the cerebellar cortex. These changes in the brain lead to paralysis of limbs in fluoridated animals.
-
-
The Effect of Sodium Fluoride on the Actions of Succinylcholine, Parathion and Demeton in Rats.
The toxicity of fluoride has been extensively studied in domestic and laboratory animals, but its effects on the nervous system have received relatively little consideration. Lu et al. (1961) reported that rats treated with sodium fluoride became more sensitive to convulsant agents, pentobarbital and diphenylhydantoin. Cholinesterase inhibition was considered to
-
Acetylcholinesterase activity in fluorosis adversely affects mental well-being: an experimental study in rural Rajasthan
Fluoride toxicity is a burgeoning problem worldwide and also in Rajasthan in India. In the state of Rajasthan, almost all districts have high fluoride (up to 18.0 ppm) in their drinking/ground water sources and about 11 million of the population [is] at risk. Several clinical and experimental studies have reported
-
Emodin protected against synaptic impairment and oxidative stress induced by fluoride in SH-SY5Y cells by modulating ERK1/2/Nrf2/HO-1 pathway.
Excessive fluoride exposure contributes to neurotoxic effects. Emodin exhibits antioxidative functions in the central nervous system (CNS); however, its neuroprotective mechanism against fluoride remains to be elucidated. Our aim was to explore the neuroprotective efficacy and the possible mechanisms of emodin. In our study, synaptic proteins and oxidative stress damage
-
Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's Developmental Brain.
Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in
-
Evaluation of standardized Bacopa monniera extract in sodium fluoride-induced behavioural, biochemical, and histopathological alterations in mice
Effect of standardized Bacopa monniera (BM; family: Scrophulariaceae) extract (100 and 300 mg/kg) against sodium fluoride (NaF; 100 and 200 ppm)-induced behavioural, biochemical, and neuropathological alterations in mice was evaluated. Akinesia, rotarod (motor coordination), forced swim test (depression), open field test (anxiety), transfer latency (memory), cholinesterase (ChE), and oxidative stress
Related Studies :
-
-
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride & IQ: 68 Studies
As of February 2021, a total of 76 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 68 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
Related FAN Content :
-