Abstract
The effect of fluoride ions on the mechanical properties of bone tissue in tension was investigated with an in vitro model. Structurally effective Bone Mineral Content (BMC) of bovine bone tissue was changed by fluoride ion treatment. First, bovine cortical bone specimens were treated with a detergent solution in order to increase the diffusion rates of the treatment ions across the samples. After the initial treatment, different ion solutions were used to treat the tension samples (fluoride, sodium and chloride). Ionic strength and pH were varied. Experimental results showed that the sodium chloride solutions of different ionic strengths, at physiological and high pH, do not affect the mechanical properties of bone tissue in tension. However, uniform fluoride treatment across the samples reduced the mechanical strength of bone tissue by converting small amounts of bone mineral to mostly calcium fluoride. This action reduces the structurally effective BMC and also possibly effects the interface bonding between the bone mineral and the organic matrix of the bone tissue.
-
-
In situ observation of fluoride-ion-induced hydroxyapatite-collagen detachment on bone fracture surfaces by atomic force microscopy
The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ~90 nm × 60 nm to ~20 nm × 20 nm. Novel AFM techniques
-
The effect of in vitro fluoride ion treatment on the ultrasonic properties of cortical bone
The mechanical properties of composites are influenced, in part, by the volume fraction, orientation, constituent mechanical properties, and interfacial bonding. Cortical bone tissue represents a short-fibered biological composite where the hydroxyapatite phase is embedded in an organic matrix composed of type I collagen and other noncollagenous proteins. Destructive mechanical testing
-
Compressive properties of cortical bone: mineral-organic interfacial bonding
Bone tissue is an anisotropic non-homogeneous composite material composed of inorganic, bone mineral fibres (hydroxyapatite) embedded in an organic matrix (type I collagen and non-collagenous proteins). Factors contributing to the overall mechanical behaviour include constituent volume fraction, mechanical properties, orientation and interfacial bonding interactions. Interfacial bonding between the mineral and
-
The role of ions and mineral-organic interfacial bonding on the compressive properties of cortical bone
Bone tissue is a composite material composed of an inorganic stiff mineral phase embedded in a compliant organic matrix. Similar to other composites, the mechanical properties of bone depend upon the properties, volume fraction, and orientation of its constituents as well as the bonding interactions. Interfacial bonding between the mineral
-
Fluoride ion effect on interfacial bonding and mechanical properties of bone
The mechanical properties of composite material (such as bone) rely on the properties of its constituents as well as the interfacial bonding between them. Bone tissue is a porous mineralized matrix composite of inorganic bone mineral and organic constituents (collagen and non-collagenous proteins). The porosity of bone is due in
Related Studies :
-
-
-
Skeletal Fluorosis Causes Bones to be Brittle & Prone to Fracture
It has been known since as the early as the 1930s that patients with skeletal fluorosis have bone that is more brittle and prone to fracture. More recently, however, researchers have found that fluoride can reduce bone strength before the onset of skeletal fluorosis. Included below are some of the
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
Related FAN Content :
-