Abstract
Fluoride increases metabolic turnover of the bone in favour of bone formation. Excessive intake of fluoride may lead to pathological changes in teeth and bones: dental and skeletal fluorosis. In this study, we investigated the effect of pregnancy and lactation on bone mineral density (BMD) in fluoride-exposed rats. Female Wistar rats were given commercially available spring water with 100 ppm fluoride (N = 8), or without addition (N = 8) for 18 weeks. At 16 weeks of age, four female rats and one male rat were kept in a cage for 5 days; all females were successfully impregnated. BMD was measured at 16 weeks of age, on the first day postpartum, and at the end of lactation. Spinal BMD was significantly higher in fluoride-exposed rats than control (P < 0.05), but there were no differences in femoral BMD (P = 0.670). During pregnancy, spinal BMD and femoral BMD were not significantly changed in fluoride-exposed rats, whereas BMD of the spine was significantly decreased in the control rats (P = 0.013), but not in the femur. During lactation, BMD was significantly decreased at the two regions compared to initial values (P < 0.05) in both groups. This study shows that pregnancy has no effect on bone, but lactation has a decreasing effect on BMD in fluoride-exposed rats.
-
-
A prospective study of bone mineral content and fracture in communities with differential fluoride exposure
In 1983/1984, a study of bone mass and fractures was begun in 827 women aged 20-80 years in three rural Iowa communities selected for the fluoride and calcium content of their community water supplies. The control community's water had a calcium content of 67 mg/liter and a fluoride content of
-
Fluoride in Drinking Water, Diet, and Urine in Relation to Bone Mineral Density and Fracture Incidence in Postmenopausal Women.
Background: Although randomized controlled trials (RCTs) have demonstrated that high fluoride increases bone mineral density (BMD) and skeletal fragility, observational studies of low-dose chronic exposure through drinking water (<1.5mg/L, the maximum recommended by the World Health Organization) have been inconclusive. Objective: We assessed associations of fluoride in urine, and intake via
-
Denser but Not Stronger? Fluoride-Induced Bone Growth and Increased Risk of Hip Fractures.
Abstract Since the mid-1940s, fluoride has been added to toothpaste and (in some countries) tap water, table salt, or milk to reduce dental cavities.1 Although low-level fluoride supplementation prevents cavities, higher levels cause white mottling of the teeth.2 What is more, some studies suggest fluoride in drinking water may increase the
-
Radiological spectrum of endemic fluorosis: relationship with calcium intake
Skeletal fluorosis continues to be endemic in many parts of India. Osteosclerosis and interosseous membrane calcification have long been regarded as hallmarks of this disease. Our study showed in addition a wide variety of radiological patterns: coarse trabecular pattern, axial osteosclerosis with distal osteopenia and diffuse osteopenia. Subjects with osteopenic changes had
-
Fluoride exposure may accelerate the osteoporotic change in postmenopausal women: animal model of fluoride-induced osteoporosis
Carbonic anhydrase is a key enzyme for initiating the crystal nucleation, seen as “the central dark line” in the crystal structure in calcified hard tissues such as tooth enamel, dentin and bone. Both estrogen deficiency and fluoride exposure adversely affected the synthesis of this enzyme in the calcifying hard tissues.
Related Studies :
-
-
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Unheeded Warnings: Government Health Authorities Ignore Fluoride Risk for Kidney Patients
Despite the well known fact that individuals with kidney disease are at much higher risk of fluoride toxicity than the general population, there has yet to be any attempt in the United States, or any other country that practices mass-scale water fluoridation to determine the prevalence of fluoride-related effects (e.g.,
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
Related FAN Content :
-