Abstract
Fluoride increases metabolic turnover of the bone in favour of bone formation. Excessive intake of fluoride may lead to pathological changes in teeth and bones: dental and skeletal fluorosis. In this study, we investigated the effect of pregnancy and lactation on bone mineral density (BMD) in fluoride-exposed rats. Female Wistar rats were given commercially available spring water with 100 ppm fluoride (N = 8), or without addition (N = 8) for 18 weeks. At 16 weeks of age, four female rats and one male rat were kept in a cage for 5 days; all females were successfully impregnated. BMD was measured at 16 weeks of age, on the first day postpartum, and at the end of lactation. Spinal BMD was significantly higher in fluoride-exposed rats than control (P < 0.05), but there were no differences in femoral BMD (P = 0.670). During pregnancy, spinal BMD and femoral BMD were not significantly changed in fluoride-exposed rats, whereas BMD of the spine was significantly decreased in the control rats (P = 0.013), but not in the femur. During lactation, BMD was significantly decreased at the two regions compared to initial values (P < 0.05) in both groups. This study shows that pregnancy has no effect on bone, but lactation has a decreasing effect on BMD in fluoride-exposed rats.
-
-
A prospective study of bone mineral content and fracture in communities with differential fluoride exposure
In 1983/1984, a study of bone mass and fractures was begun in 827 women aged 20-80 years in three rural Iowa communities selected for the fluoride and calcium content of their community water supplies. The control community's water had a calcium content of 67 mg/liter and a fluoride content of
-
Fluoride exposure may accelerate the osteoporotic change in postmenopausal women: animal model of fluoride-induced osteoporosis
Carbonic anhydrase is a key enzyme for initiating the crystal nucleation, seen as “the central dark line” in the crystal structure in calcified hard tissues such as tooth enamel, dentin and bone. Both estrogen deficiency and fluoride exposure adversely affected the synthesis of this enzyme in the calcifying hard tissues.
-
Denser but Not Stronger? Fluoride-Induced Bone Growth and Increased Risk of Hip Fractures.
Abstract Since the mid-1940s, fluoride has been added to toothpaste and (in some countries) tap water, table salt, or milk to reduce dental cavities.1 Although low-level fluoride supplementation prevents cavities, higher levels cause white mottling of the teeth.2 What is more, some studies suggest fluoride in drinking water may increase the
-
Fluoride in Drinking Water, Diet, and Urine in Relation to Bone Mineral Density and Fracture Incidence in Postmenopausal Women.
Background: Although randomized controlled trials (RCTs) have demonstrated that high fluoride increases bone mineral density (BMD) and skeletal fragility, observational studies of low-dose chronic exposure through drinking water (<1.5mg/L, the maximum recommended by the World Health Organization) have been inconclusive. Objective: We assessed associations of fluoride in urine, and intake via
-
Fluoride exposure and CALCA methylation is associated with the bone mineral density of Chinese women.
Highlights Excessive fluoride exposure is positively related to CALCA methylation in women. CALCA methylation in Chinese women is negatively associated with BMD. Long-term excessive fluoride exposure is negatively related to BMD in women. BMD in women with CALCA hypermethylated is more susceptible to fluoride. The statistical associations are age-specific
Related Studies :
-
-
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
Related FAN Content :
-