Abstract
Osteoporosis was induced by feeding a low calcium-high phosphorus diet for 41 weeks to adult beagles. The effect of fluoride to modify this condition was examined by adding increasing levels to the purified diet; daily intake of fluoride was about 0, 25, 85, 300 and 1,000 /ug/kg body weight. Radiographic and microradiographic examination of bones revealed no effects of added fluoride on the degree of osteoporosis. Densitometry of mandibles by I125 bone scanning showed that mineral mass decreased significantly with increased dietary fluoride. Specific gravity and ash per volume bone of long bones, vertebrae and frontal bone were not influenced by increased levels of fluoride. Calcium content in bone ash decreased slightly and phosphorus content increased significantly with increased dietary fluoride. Fluoride content in ash was proportional to dietary fluoride. Retention of fluoride in vertebrae exceeded by far that in long bones. Bending and tension tests on femur strips revealed no differences in biomechanical quality due to fluoride levels in the food.
-
-
High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep
Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone
-
Radiological spectrum of endemic fluorosis: relationship with calcium intake
Skeletal fluorosis continues to be endemic in many parts of India. Osteosclerosis and interosseous membrane calcification have long been regarded as hallmarks of this disease. Our study showed in addition a wide variety of radiological patterns: coarse trabecular pattern, axial osteosclerosis with distal osteopenia and diffuse osteopenia. Subjects with osteopenic changes had
-
Fluoride Salts are no Better at Preventing New Vertebral Fractures than Calcium-Vitamin D in Postmenopausal Osteoporosis: The FAVOStudy.
Although fluoride salts have been shown to be capable of linearly increasing spinal bone mineral density (BMD) in postmenopausal osteoporosis, the effects of this gain in density on the vertebral fracture rate remain controversial. We conducted a 2-year multicenter, prospective, randomized, double-masked clinical trial in 354 osteoporotic women with vertebral
-
Effect of fluoride on bone formation and strength in Japanese quail
The effect of fluoride on bone metabolism was studied using Japanese quail fed diets containing 1.2% calcium, 1.2% calcium + 0.075% fluoride, 0.4% calcium, and 0.4% calcium + 0.075% fluoride. In the first experiments, quail were fed the diets immediately after hatching. Low calcium intake (0.4%) resulted in a 23%
-
On fluoride and bone strength
We welcome the opportunity to respond to the letter by Baylink et al. Their letter makes many good points but, unfortunately, it also contains several misinterpretations of our analysis. The thesis of Baylink's letter and the paper of Einhorn et al. [1] is that fluoride incorporation into cortical bone does
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
In Vitro Studies on Fluoride & Bone Strength
The "in vitro" research on fluoride and bone strength confirms what has repeatedly been found in animal and human studies: the more fluoride a bone has, the weaker the bone becomes. In an in vitro bone study, the researcher directly exposes a human or animal bone to a fluoride solution
-
The Relationship Between Fluoride, Bone Density, and Bone Strength
Although fluoride has generally been found to reduce the bone density of cortical bone, it is well documented that fluoride can increase the density of trabecular bone (aka cancellous bone). Trabecular bone is the primary bone of the spine, whereas cortical bone is the primary bone of the legs and arms. While increases in
-
Fluoride Reduces Bone Strength in Animals
Most animal studies investigating how fluoride effects bone strength have found either a detrimental effect, or no effect. Few animal studies have found a beneficial effect. In fact, one of the few studies that found a beneficial effect was unable to be repeated by the same authors in a later
Related FAN Content :
-