Abstract
The influence of chronic Fl intoxication on lipid peroxidation and the state of the antioxidant system was studied in rats on different diets. Chronic Fl intoxication inhibited antioxidant activity and caused an increase in the rate of peroxidation and the level of lipoperoxides in liver, brain and serum. Diets with enriched fat aggravated these disturbances; diets rich in protein had a beneficial effect. Additional complex supplementation of protein with Met and vitamin E restored original antioxidant activity and reduced the content of lipoperoxides in tissues almost to the normal level and was recommended as protecting factors in fluorosis.
-
-
Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats
Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity were studied in rats. A total of 28 Wistar albino male rats were used. Four study groups were randomly formed with seven animals in each. The groups were treated for 21 days with distilled water (control group), with
-
Mitigating role of quercetin against sodium fluoride-induced oxidative stress in the rat brain
CONTEXT: Quercetin is a well known aglycone flavonoid that is widely found in different food sources. OBJECTIVE: In this study, the in vivo neuroprotective potential of quercetin against sodium fluoride-induced oxidative stress was evaluated. MATERIALS AND METHODS: Wistar rats were divided into five treatment groups and then subjected to daily
-
Oxidative stress parameters in rats exposed to fluoride and caffeine
In our experiment, the 1-month effects of caffeine (Caff) and fluoride (F) administered separately and together on nitric oxide and total antioxidant status in serum, brain, liver and kidney of rats were investigated. Also, the influence of caffeine on fluoride excretion with urine was studied. Thirty adult male Wistar rats
-
[The influence of methionine and vitamin E on oxidative stress in rats’ liver exposed to sodium fluoride]
BACKGROUND: Fluorine influences many processes occurring in the organism. Controversies over the evaluation of the biological effects of this substance are due to a small difference between tolerable and toxic fluorine doses. One of the main mechanisms of the fluorine toxic action is its ability to induce oxidative stress via
-
Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat
BACKGROUND: Sodium fluoride (NaF) intoxication is associated with oxidative stress and altered antioxidant defense mechanism. The present study was carried out to evaluate the potential protective role of blackberry and quercetin (Q) against NaF-induced oxidative stress and histological changes in liver, kidney, testis and brain tissues of rats. METHODS: The rats
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
-
Fluoride Exposure Increases Metabolic Requirement for Magnesium
Fluoride's toxicity is significantly enhanced in the presence of nutritional deficiencies. Similarly, fluoride exposure increases the body's requirement for certain nutrients. An individual with a high intake of fluoride, for example, will need a proportional increase in calcium to avoid the mineralization defects (e.g., osteomalacia) that fluoride causes to bone
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
Related FAN Content :
-