Abstract
Higher blood lead (BPb) levels have been reported in children living in communities that receive fluoride-treated water. Here, we examined whether fluoride co-administered with lead increases BPb and lead concentrations in calcified tissues in Wistar rats exposed to this metal from the beginning of gestation. We exposed female rats and their offspring to control water (Control Group), 100mg/L of fluoride (F Group), 30mg/L of lead (Pb Group), or 100mg/L of fluoride and 30mg/L of lead (F+Pb Group) from 1 week prior to mating until offspring was 81 days old. Blood and calcified tissues (enamel, dentine, and bone) were harvested at day 81 for lead and fluoride analyses. Higher BPb concentrations were found in the F+Pb Group compared with the Pb Group (76.7+/-11.0microg/dL vs. 22.6+/-8.5microg/dL, respectively; p<0.001). Two- to threefold higher lead concentrations were found in the calcified tissues in the F+Pb Group compared with the Pb Group (all p<0.001). Fluoride concentrations were similar in the F and in the F+Pb Groups. These findings show that fluoride consistently increases BPb and calcified tissues Pb concentrations in animals exposed to low levels of lead and suggest that a biological effect not yet recognized may underlie the epidemiological association between increased BPb lead levels in children living in water-fluoridated communities.
-
-
Combined subchronic fluoride-lead intoxication and its attenuation with the help of a complex of bioprotectors.
Background Combined toxicity of lead and fluoride has been studied insufficiently, and there is no known information about attempts to inhibit it with any bioprotectors. Methods Lead acetate and sodium fluoride, administered separately or in combination, were injected i.p. to rats at isoeffective sublethal doses 3 times a week for 6 weeks. Some
-
Fluoride increases lead concentrations in whole blood and in calcified tissues from lead-exposed rats.
Higher blood lead (BPb) levels have been reported in children living in communities that receive fluoride-treated water. Here, we examined whether fluoride co-administered with lead increases BPb and lead concentrations in calcified tissues in Wistar rats exposed to this metal from the beginning of gestation. We exposed female rats and
-
Effects of supplementation with conjugated dienes of linoleic acid on fluoride, calcium, and magnesium levels in hard tissues and serum of mice.
With the recognition of their ability to promote weight loss, conjugated dienes of linoleic acid (CLA) have become the main ingredient of certain dietary supplements to counteract obesity. The results of prospective studies, however, indicate there may be long-term side effects that could be of key importance for the safety
-
Cardiovascular dysfunction and oxidative stress following human contamination by fluoride along with environmental xenobiotics (Cd & Pb) in the phosphate treatment area of Togo, West Africa.
Highlights The exposure of the population is important in relation to the routes of exposure levels of pollutants. Cd, Pb and F in human blood are high in subjects living in and around the phosphate processing plant. The variation of the biochemical indicators indicating the risk of cardiovascular diseases. The
-
Further development of mathematical description for combined toxicity: A case study of lead–fluoride combination.
Highlights Rats were exposed during 6 weeks to repeated i.p. injections of lead acetate, sodium fluoride or both in doses 0.05 LD50. The development of intoxication was estimated quantitatively with 54 functional, biochemical and morphometric indices. For mathematical description of effects a response surface regression model containing linear and
Related Studies :
-
-
-
Fluorine recovery in the fertilizer industry - a review.
The fluorine compounds liberated during the acidulation of phosphate rock in the manufacture of phosphoric acid and fertilizers are now rightly regarded as a menace, and the industry is now obliged to suppress emissions of fluorine-containing vapours to within very low limits in most parts of the world. As with any pollution control operation, it is highly desirable for the operator of the fluorine scrubbing operation to find a use or market for the recovered fluorine to help defray at least partially the cost of the operation.
-
Westendorf's Research on Incomplete Dissociation of Silicofluorides Under Physiological Conditions
The Kinetics of Acetylcholinesterase Inhibition and the Influence of Fluoride and Fluoride Complexes on the Permeability of Erythrocyte Membranes Dissertation to receive Ph.D. in Chemistry from the University of Hamburg By Johannes Westendorf Hamburg, Germany - 1975 (Click here to read Westendorf's thesis) Reviewer: Prof Dr. A. Knappwost Co-Reviewers: Prof, Dr, Malomy Prof, DR, Strehlow Prof, Dr. Hilz Prof Dr. Gercken The
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
Related FAN Content :
-