Abstract
Exposure to fluoride in drinking water was studied for evidence of detrimental effects on skeletal calcification and bone development in children. Three groups of children aged 7 through 14 years, living in Lubbock and Amarillo, Tex., and Cumberland, Md., were selected on the basis of continuous exposure to their communal drinking waters, which contained fluoride in the amounts of 3.5 to 4.5 p.p.m. F, 3.3 to 6.2 p.p.m. F, and 0.1 p.p.m. F, respectively. Radiographs were taken of the right hand and wrist of 2,050 children. From these X-rays, the skeletal age was assessed and a quantitative index of ossification was determined.
No evidence, available by radiographs was obtained which would indicate that there was any adverse effect on the carpal bones or on their growth and development as a consequence of the continuous use of drinking water containing approximately 3.5 to 6.2 p.p.m. F. These results confirm the safety of maintaining the fluoride level of public water supplies at about 1.00 p.p.m. F, by controlled fluoridation, for the reduction of tooth decay.
-
-
Effects of dialysate calcium and fluoride on bone disease during regular hemodialysis
A previous study indicated that, in patients maintained by hemodialysis, clinically and roentgenographically apparent bone disease appeared almost exclusively when the dialystate calcium concentration was less than 5.7 mg per 100 ml. In the present study, bone biopsy specimens from the iliac crest were studied at the beginning and end
-
Short-term effects of fluoride and strontium on bone formation and resorption in the mouse
The early effects of sodium fluoride (0.80 mg/kg/d) and strontium chloride (0.27%) given alone, or in combination in drinking water, on bone metabolism were examined in the mouse using dynamic histomorphometric methods. Four weeks of oral strontium supplementation increased the osteoid surface and reduced the number of acid phosphatase-stained osteoclasts.
-
Hip fracture incidence not affected by fluoridation. Osteofluorosis studied in Finland
Iliac crest biopsies were taken from patients with hip fracture from a low-fluoride area (less than 0.3 ppm), from an area with fluoridated drinking water (1.0-1.2 ppm), and from a high-fluoride area (greater than 1.5 ppm). Fluoride content analysis and histomorphometry of bone were performed. The hip fracture incidence during
-
Effect of fluoride ions on apatite crystal formation in rat hard tissues.
Fluoride is widely believed to be a useful chemical substance for preventing dental caries. However, the mechanism underlying crystal perforation in the tooth enamel and the effect of fluoride on hard tissues are unclear. To clarify the mechanism of the biological action of fluoride in the mineralization process, we examined
-
Toxic effect of fluoride on biochemical parameters and collagen metabolism in osseous and non-osseous tissues of rats
The present study was carried out to assess the effects of fluoride exposure on collagen metabolism by evaluating the level of hydroxyproline in both osseous and non-osseous tissues along with serum biochemical parameters in rats. Eight week old female rats were divided into two equal groups of six rats each.
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
Related FAN Content :
-