Abstract
Microscopic examinations were made of 99 bones from 37 persons coming to necropsy who had resided 10 years or more in communities where the drinking water contained 1 to 4 ppm of naturally occurring or artificially added fluoride. Ninety-four bone specimens from 33 controls who had lived in areas where the drinking water contained less than 0.5 ppm fluoride were used for comparison.
In addition to the bone specimens, the lumbar intervertebral body joints of the subjects were examined.
The microscopic examinations showed no significant differences between the fluoride-exposed group and the control group that could be related to fluoride intake. Microscopic changes in the bones and joints incidental to aging and due to non-fluoride-related conditions were observed in both series.
-
-
Fluoride reduces bone strength in older rats
In response to recent concerns about the effect of water fluoridation on hip fracture rates, we studied the influence of fluoride intake on bone strength. Four groups of rats were fed a low-fluoride diet ad libitum and received 0, 5, 15, or 50 ppm of fluoride in their drinking water.
-
Effect of ultrastructural changes on the toughness of bone.
The ultrastructure of bone can be considered as a conjunction between the biology and the biomechanics of the tissue. It is the result of cellular and molecular activities of bone formation, and its organization dominates the mechanical behavior of bone. Following this perspective, the objective of this review is to
-
Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients
Bone fluoride content (BFC) was measured and histomorphometric analysis of undecalcified sections was performed in transiliac biopsy cores from 29 patients (16 men, 13 women, aged 51 +/- 17 years) suffering from skeletal fluorosis due to chronic exposure to fluoride. The origin of the exposure, known in 20 patients, was either hydric
-
Effect of fluoride ions on apatite crystal formation in rat hard tissues.
Fluoride is widely believed to be a useful chemical substance for preventing dental caries. However, the mechanism underlying crystal perforation in the tooth enamel and the effect of fluoride on hard tissues are unclear. To clarify the mechanism of the biological action of fluoride in the mineralization process, we examined
-
Effect of fluoride on reactive oxygen species and bone metabolism in postmenopausal women.
A study was made of the effects of fluoride (F) on the antioxidant defense systems of postmenopausal women residing in a fluorotic and a nonfluorotic village in Chitoor district, Andhra Pradesh, India. Twenty-five postmenopausal women (approximately 10 years postmenopause, mean age 57 years) residing in endemic fluorotic Adharam and nonfluorotic
Related Studies :
-
-
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
Related FAN Content :
-