Abstract
PURPOSE:
To find out the skeletal radiologic appearances of high aluminum fluorosis caused by burning coal as domestic fuel.
MATERIALS AND METHODS:
Thirty-nine cases of high aluminum fluorosis caused by eating corns baked by coal and china clay were studied. The authors also investigated the environmental conditions, clinical appearances and other laboratory test of the patients.
RESULTS:
The skeletal radiographic appearances were very complicated. The main change was osteomalacia. Osteoporosis, osteosclerosis and dysplastic bone were also found. The radiographic appearances of osteomalacia included: decrease of bone density, haziness of bone structure, Looser?s zone, lucent zone of the pelvic margins, dense-lucent-dense zone in the metaphysis of long bone, osteoporosis zone under the epiphysis, signs of ricket disease, pelvic malformation acetabular invagination and curved tibia and fibula. Bone transformation manifestation was also a prominent feature.
CONCLUSION:
We suggest that high aluminum fluorosis is a special type of fluorosis presenting as osteomalacia. Our results provide evidences to establish criteria for classification of fluorosis.
-
-
Effect of fluoride on aluminum-induced bone disease in rats with renal failure
Aluminum (Al) accumulation in renal failure is an etiological factor in the pathogenesis of low turnover bone disease. Aluminum-induced impairment of mineralization has been related to a reduced extent of active bone-forming surface. The present study investigated the effect of fluoride, a potent stimulator of osteoblast number, on the toxicity
-
Fluoride Sources, Toxicity and Fluorosis Management Techniques - A Brief Review.
Highlights Overexposure to fluoride via drinking water causes several health effects including fluorosis Endemic fluorosis is still persisted in several countries even with advancement in research Most of fluorosis management techniques suggested in the past have come with their own drawbacks Defluoridation techniques based on aluminium materials pose serious
-
Fluorine and Fluorosis [June 1944].
Excerpt The first account of mottled enamel in human beings was given in 1902 by Eager of the United States Public Health Service who noticed its frequency among Italian emigrants from Naples. Black and McKay (1916) found it occurring in various parts of the U.S.A. and described it more fully in
-
Effects of smoking, use of aluminum utensils, and tamarind consumption on fluorosis in a fluorotic village of Andhra Pradesh, India
A field study was undertaken to determine effects of tamarind, the use of aluminium (Al) cooking utensils, and smoking on dental and skeletal fluorosis in the randomly selected fluoride (F) endemic village of Buttlapally in the Nalgonda District, Andhra Pradesh, India, where the F level in the drinking water is
-
Association between fluoride, magnesium, aluminum and bone quality in renal osteodystrophy
INTRODUCTION: Trace elements are known to influence bone metabolism; however, their effects may be exacerbated in renal failure because dialysis patients are unable to excrete excess elements properly. Our study correlated bone quality in dialysis patients with levels of bone fluoride, magnesium, and aluminum. A number of studies have linked
Related Studies :
-
-
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
-
Similarities between Skeletal Fluorosis and Renal Osteodystrophy
It is quite possible, and indeed likely, that some kidney patients diagnosed with renal osteodystrophy are either suffering from skeletal fluorosis or their condition is being complicated/exacerbated by fluoride exposure.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
Variability in Radiographic Appearance of Skeletal Fluorosis
Osteosclerosis (dense bone) is the bone change typically associated with skeletal fluorosis, particularly in the axial skeleton (spine, pelvis, and ribs). Research shows, however, that skeletal fluorosis produces a spectrum of bone changes, including osteomalacia, osteoporosis, exostoses, changes resulting from secondary hyperparathyroidism, and combinations thereof. Although the reason for this radiographic variability is not yet fully understood, it is believed to relate to the dose of fluoride consumed, the individual's nutritional status, exposure to aluminum, genetic susceptibility, presence of kidney disease, and area of the skeleton examined.
Related FAN Content :
-