Abstract
The aberrant activation of osteoblasts in the early stage is one of the critical steps during the pathogenesis of skeletal fluorosis. The endoplasmic reticulum (ER) stresses and unfolded protein response (UPR) are initiated to alleviate the accumulation of unfolded proteins against cell injury. The previous researches had demonstrated that fluoride induced ER stress in other cells or tissues. In this study, we determined the ER stress and UPR to investigate their roles in aberrant activation of fluoride-treated osteoblasts. The gene expression of bone markers and UPR factors in MC3T3-E1 cells treated with varying doses of fluoride administration was analyzed. Meantime, levels of glutathione and glutathione disulfide were tested by the ultraperformance liquid chromatography-tandem mass spectrometry applications. Our results indicated that a certain dose and period of fluoride administration induced cell proliferation and differentiation, and Runx2 was involved in the regulation of osteoblastic differentiation of MC3T3-E1 cells. Increase trend of Runx2 expression was consistent with change of marker of ER stress. Fluoride caused ER stress and stimulated UPR during the process of osteoblast maturation, while oxidative stress was also active in the occurrence of ER stress. These data indicated that ER stress and UPR were possibly involved in the action of fluoride on osteoblasts.
-
-
[Effects on expression of osteogenesisgene in the osteoblast with endoplasmic reticulum stress induced by fluoride].
OBJECTIVE: To explore the gene expressions of endoplasmic reticulum stress and differentiation in osteoblast treated by excess fluoride. METHODS: Using primary cultured human osteoblasts for fluorosis model in vitro, apoptosis was inspected by flow cytometer, and RNA was extracted for examination of the unfolded protein response and bone differentiation genes. RESULTS: Fluoride
-
Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo
The present study investigated the effects of fluoride on endoplasmic reticulum (ER) stress (ERS) and osteoblast apoptosis in vivo. Forty-eight Wistar rats were randomly divided into four groups (12/group) and exposed to 0, 50, 100, and 150 mg/L of fluoride in drinking water for 8 weeks, respectively. Peripheral blood samples and bilateral
-
Effect of siRNA PERK on fluoride-induced osteoblastic differentiation in OS732 cells
The purpose of this work is to study the action of fluoride on osteoblastic function through knocking down double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK) mRNA in OS732 cells (human osteoblast-like cell line). The previous researches had demonstrated that fluoride induced endoplasmic reticulum (ER) stresses in other cells or
-
Role of oxidative stress in osteoblasts exposed to sodium fluoride
We investigated the relationship between oxidative stress and osteoblasts viability in osteoblasts exposed to various concentrations of fluoride in this study. Primary calvarial osteoblasts from neonatal Kunming mice were cultured and subcultured to the third generation. Osteoblasts were incubated with sodium fluoride (0, 0.5, 1, 2, 4, 8, 12, and
-
Effects of fluoride on the proliferation and activation of osteoblasts by regulating methylation of the DNA repair genes MGMT and MLH1.
Introduction Fluoride can induce the proliferation and activation of osteoblasts, resulting in skeletal fluorosis progression; however, the specific mechanism is unclear. Methods Cell proliferation was examined using the MTT assay. Flow cytometry was performed to detect the cell cycle distribution. Alkaline phosphatase (ALP) was calculated to evaluate bone formation and turnover. Gene methylation
Related Studies :
-
-
-
Fluoride's Effect on Osteoblasts (Bone-Forming Cells)
As noted by the National Research Council, "[p]erhaps the single clearest effect of fluoride on the skeleton is its stimulation of osteoblast proliferation." (NRC 2006). Osteoblasts are bone-forming cells. "Stimulatory effects of fluoride on osteoblasts result in formation of osteoid, which subsequently undergoes mineralization." (Fisher RL, et al. 1989). If the new
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride & Osteoclasts
It is well established that fluoride exposure can increase bone formation by increasing the proliferation of osteoblasts. Less clear is fluoride's impact on bone resorption and the cells (osteoclasts) that resorb bone. Many have assumed that fluoride's main effect on bone resorption and osteoclasts is an inhibitory one (i.e., less
-
Fluoride & Osteocytes
The osteocyte is a type of bone cell which is increasingly believed to play an important role in repairing defects that arise in bone, thereby maintaining the bone’s structural integrity. Because osteocytes are engulfed in fluoride-rich bone mineral and help resorb the bone as part of the remodeling process, they
Related FAN Content :
-