Abstract
Human enamel development of the permanent teeth takes place during childhood and stresses encountered during this period can have lasting effects on the appearance and structural integrity of the enamel. One of the most common examples of this is the development of dental fluorosis after childhood exposure to excess fluoride, an elemental agent used to increase enamel hardness and prevent dental caries. Currently the molecular mechanism responsible for dental fluorosis remains unknown; however, recent work suggests dental fluorosis may be the result of activated stress response pathways in ameloblasts during the development of permanent teeth. Using fluorosis as an example, the role of stress response pathways during enamel maturation is discussed.
-
-
Effect of fluoride ions on apatite crystal formation in rat hard tissues.
Fluoride is widely believed to be a useful chemical substance for preventing dental caries. However, the mechanism underlying crystal perforation in the tooth enamel and the effect of fluoride on hard tissues are unclear. To clarify the mechanism of the biological action of fluoride in the mineralization process, we examined
-
Dental fluorosis and a polymorphism in the COL1A2 gene in Mexican children.
Highlights Dental fluorosis is a public health problem in the communities evaluated. The rs 412777 polymorphism in the COL1A2 gene was found in Mexican children. An association between the COL1A2 gene polymorphism and dental fluorosis was found. The genetic variant evaluated represents a risk factor to develop dental fluorosis. OBJECTIVE:
-
LS8 cell apoptosis induced by NaF through p-ERK and p-JNK - a mechanism study of dental fluorosis
OBJECTIVE: To investigate the possible biological mechanism of dental fluorosis at a molecular level. MATERIAL AND METHODS: Cultured LS8 were incubated with serum-free medium containing selected concentrations of NaF (0???2?mM) for either 24 or 48?h. Subcellular microanatomy was characterized using TEM; meanwhile, selected biomolecules were analysed using various biochemistry techniques. Transient
-
Evaluation of genetic polymorphisms in MMP2, MMP9 and MMP20 in Brazilian children with dental fluorosis.
Highlights MMP2, MMP9 and MMP20 were expressed in the enamel development of the animalmodels. Polymorphisms in MMP2, MMP9 and MMP2 were not associated with dental fluorosis. Afro-descendants had a higher risk of dental fluorosis than caucasian. Recent studies suggested that genetics contribute to differences in dental fluorosis (DF) susceptibility among individuals
-
Downregulation of miR-4755-5p promotes fluoride-induced osteoblast activation via tageting Cyclin D1.
Background Endemic fluorosis remains a major public health issue in many countries. Fluoride can cause abnormalities in osteoblast proliferation and activation, leading to skeletal fluorosis. However, its detailed molecular mechanism remains unclear. Based on a previous study, the aim of this study is to explore the role of miRNA in osteoblast
Related Studies :
-
-
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
"Mild" Dental Fluorosis: Perceptions & Psychological Impact
The vast majority of research has found that patients, parents, and the general public alike view mild fluorosis (TF score 3) as a significant blemish of the teeth, one that is likely to embarrass the affected child to a degree that cosmetic treatment would be warranted.
-
Racial Disparities in Dental Fluorosis
In 2005, the Centers for Disease Control published the results of a national survey of dental fluorosis conducted between 1999 and 2002. According to the CDC, black children in the United States have significantly higher rates of dental fluorosis than either white or Hispanic children. This was not the first time that black children were found to suffer higher rates of dental fluorosis. At least five other studies -- dating as far back as the 1960s -- have found black children in the United States are disproportionately impacted by dental fluorosis.
-
Moderate/Severe Dental Fluorosis
In its "moderate" and severe forms, fluoride causes a marked increase in the porosity of the enamel. After eruption into mouth, the porous enamel of moderate to severe fluorosis readily takes up stain, creating permanent brown and black discolorations of the teeth. In addition to extensive staining, teeth with moderate to severe fluorosis are more prone to attrition and wear - leading to pitting, chipping, and decay.
Related FAN Content :
-