Abstract
SUMMARY: Learning-memory behavior was tested in mice on a Y-maze after they drank water containing different concentrations of sodium fluoride. Impairment of the structure of the Gray I synaptic interface in the CA3 area of the hippocampus was analyzed quantitatively by electron microscopy and a computer imaging processor. The main results were: the learning ability of mice drinking water with a high concentration of sodium fluoride showed considerable deterioration, the thickness of post-synaptic density (PSD) was decreased, and the width of the synaptic cleft was markedly increased. The results suggest that impairment of learning capability of mice induced by fluorosis may be closely associated with pathological changes of synaptic structure in the brain.
-
-
Memory impairment induced by sodium fluoride is associated with changes in brain monoamine levels.
Previous studies suggest that sodium fluoride (NaF) can impair performance in some memory tasks, such as open-field habituation and two-way active avoidance. In the present study, we evaluated the effect of NaF intake (100 ppm in drinking water for 30 days) and its short-term (15 days) withdrawal on open-field habituation and brain monoamine
-
[Effects of selenium on the damage of learning-memory ability of mice induced by fluoride].
Sodium fluoride added with or without selenite in deionized water was administered to male mice for 8 weeks. The influences of fluoride on learning-memory behavior were tested on Y-maze, and the ultrastructure of Gray 1 synaptic interface in the CA3 area hippocampus was qualitatively analyzed by electron microscopy and computer
-
[The establishment and assessment of animal model of chronic fluorosis-induced cognitive dysfunction in rats].
Objective To establish the rat model of cognitive dysfunction induced by chronic fluorosis and to investigate the underlying mechanism. Methods Animal model of chronic fluorosis was established by feeding Wistar rats on distillated water containing different concentrations of sodium fluoride (0, 50, 100, and 150 mg/L) for six months; Y-maze and
-
Effects of chronic fluorosis on the brain.
Highlights Reviewing the mechanism of brain injury caused by chronic fluorosis is of great significance for protecting residents in fluorosis endemic areas. Abstract This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury,
-
Cognitive Decline of Rats with Chronic Fluorosis Is Associated with Alterations in Hippocampal Calpain Signaling.
The study was designed to evaluate an influence of excessive fluoride (F-) intake on cognitive capacities of adult rats and on proteins of memory-related calpain signaling in hippocampus. Control animals were given water with natural F- content of 0.4 ppm; rats from other groups consumed the same water supplemented with 5,
Related Studies :
-
-
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
Related FAN Content :
-