Abstract
The effect of drinking water fluoridation on the fluoride content of human bone, on cancellous bone strength and on the mineral density of bone was studied by analysing 158 autopsy samples of the anterior iliac crest from persons from two different areas. In the samples from the town of Kuopio, where drinking water has been fluoridated since 1959, the fluoride concentrations were considerably higher than in samples from the surrounding area where low-fluoride drinking water is used. The fluoride content of bones from Kuopio increased significantly with age, while considerably less change with age was found in samples from outside Kuopio. The highest fluoride content in bone ash was observed in women with severe osteoporosis. Cancellous bone strength measured by a strain transducer was statistically significantly higher in women with chronic immobilizing disease from Kuopio, compared with the corresponding group from outside Kuopio. No statistically significant differences in bone strength were found in men. There were no statistically significant differences in bone mineral density, as measured by gamma ray attenuation, between the samples from the fluoridated and non-fluoridated areas
-
-
Human vertebral bone: relation of strength, porosity, and mineralization to fluoride content
Radiographically normal vertebral bone cylinders from 80 male subjects were tested mechanicallly by static compression and analyzed for porosity, fluoride and ash content. As a group, they had low fluoride content, suggesting little prior intake, consonent with this geographic area. Nevertheless, increasing levels of fluoride were associated with bulkier bone,
-
Effects of fluoride on bone metabolism in patients with hemodialysis
The maior pathway of fluoride elimination from the human body is the kidney. The discharge of fluoride into urine depends on the clearance of the kidney. Fluoride in serum of hemodialysis patients is higher than that of healthy subjects. Fluoride is not reduced sufficiently with hemodialysis. Those patients are in
-
Osteomalacia is associated with high bone fluoride content in dialysis patients
Osteomalacia is now rarely observed in hemodialyzed patients since the prevention of aluminum intoxication and vitamin D deficiency. However, this disorder is still present and may be responsible for bone fractures. Fluoride overload is responsible for mineralization defects. We therefore prospectively measured the bone fluoride content in all dialysis osteomalacic
-
Association between fluoride, magnesium, aluminum and bone quality in renal osteodystrophy
INTRODUCTION: Trace elements are known to influence bone metabolism; however, their effects may be exacerbated in renal failure because dialysis patients are unable to excrete excess elements properly. Our study correlated bone quality in dialysis patients with levels of bone fluoride, magnesium, and aluminum. A number of studies have linked
-
Fluoride in synovial fluid, bone marrow, and cartilage in patients with osteoarthritis.
The aim of this study was to comp are the concentrations of fluoride (F) in cartilage, bone marrow, and synovial fluid taken from patients with osteoarthritis (OA). We also determined the correlation between OA risk factors, including age, sex, obesity, and hypertension, and F concentrations in the studied materials. The
Related Studies :
-
-
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride Reduces Bone Strength in Animals
Most animal studies investigating how fluoride effects bone strength have found either a detrimental effect, or no effect. Few animal studies have found a beneficial effect. In fact, one of the few studies that found a beneficial effect was unable to be repeated by the same authors in a later
-
In Vitro Studies on Fluoride & Bone Strength
The "in vitro" research on fluoride and bone strength confirms what has repeatedly been found in animal and human studies: the more fluoride a bone has, the weaker the bone becomes. In an in vitro bone study, the researcher directly exposes a human or animal bone to a fluoride solution
-
Mechanisms by which fluoride may reduce bone strength
Based on a large body of animal and human research, it is now known that fluoride ingestion can reduce bone strength and increase the rate of fracture. There are several plausible mechanisms by which fluoride can reduce bone strength. As discussed below, these mechanisms include: Reduction in Cortical Bone Density De-bonding of
Related FAN Content :
-