Abstract
A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure.
*Full-text study online at https://europepmc.org/article/MED/19828896#free-full-text
-
-
Environmental and physiological factors affecting dental fluorosis
In addition to differences in fluoride intake and possibly to calcium deficiency or malnutrition, there are several factors which may account for individual differences in the occurrence of dental fluorosis. Disorders in acid-base balance affect the renal handling of fluoride such that, in acidosis, the excretion rate is diminished and,
-
Possible Association Between Polymorphisms in ESR1, COL1A2, BGLAP, SPARC, VDR, and MMP2 Genes and Dental Fluorosis in a Population from an Endemic Region of West Bengal.
Dental fluorosis (DF) is the most prevalent form of fluorosis in India affecting millions of people all over the country. As estrogen receptor 1 (ESR1), collagen type 1 alpha 2 (COL1A2), bone ?-carboxyglutamic acid protein (BGLAP), secreted protein acidic and cysteine-rich (SPARC), vitamin D receptor (VDR), and matrix metallopeptidase 2
-
Dental fluorosis and a polymorphism in the COL1A2 gene in Mexican children.
Highlights Dental fluorosis is a public health problem in the communities evaluated. The rs 412777 polymorphism in the COL1A2 gene was found in Mexican children. An association between the COL1A2 gene polymorphism and dental fluorosis was found. The genetic variant evaluated represents a risk factor to develop dental fluorosis. OBJECTIVE:
-
Assessing Fluorosis Incidence in Areas with Low Fluoride Content in the Drinking Water, Fluorotic Enamel Architecture, and Composition Alterations.
There is currently no consensus among researchers on the optimal level of fluoride for human growth and health. As drinking water is not the sole source of fluoride for humans, and fluoride can be found in many food sources, this work aimed to determine the incidence and severity of dental
-
Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study
Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained
Related Studies :
-
-
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Racial Disparities in Dental Fluorosis
In 2005, the Centers for Disease Control published the results of a national survey of dental fluorosis conducted between 1999 and 2002. According to the CDC, black children in the United States have significantly higher rates of dental fluorosis than either white or Hispanic children. This was not the first time that black children were found to suffer higher rates of dental fluorosis. At least five other studies -- dating as far back as the 1960s -- have found black children in the United States are disproportionately impacted by dental fluorosis.
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
Unheeded Warnings: Government Health Authorities Ignore Fluoride Risk for Kidney Patients
Despite the well known fact that individuals with kidney disease are at much higher risk of fluoride toxicity than the general population, there has yet to be any attempt in the United States, or any other country that practices mass-scale water fluoridation to determine the prevalence of fluoride-related effects (e.g.,
-
Genetic Susceptibility to Fluoride
"The results suggest that genetic factors may contribute to the variation in bone response to fluoride exposure.... The genetic influence on the efficacy and adverse effects has been demonstrated for some medications but has never been demonstrated for bone response to fluoride. The demonstration of such genetic influence on bone
Related FAN Content :
-