Abstract
Long-term excessive fluoride intake is linked to skeletal disease. Skeletal health is influenced by the balance between bone formation and resorption of which osteoblast function is critical. The objectives of this study were to determine the effect of fluoride treatment on osteoblast proliferation, apoptosis and caspase-3 and caspase-9 mRNA expression in vitro. Neonatal rat osteoblasts were cultured in the presence of varying concentrations (0.5-30 mg/l) of sodium fluoride and effects of treatments were determined. Treatment with sodium fluoride inhibited osteoblast proliferation in a dose-dependent fashion and effects were maximal after 120 h incubation. A significant increase in osteoblast apoptosis was observed (after 24 and 72-h treatment) in response to the lowest dose of sodium fluoride (0.5 mg/l) and osteoblast apoptosis was further increased in response to higher doses. Increased-osteoblast caspase-3 and caspase-9 mRNA was also observed in response to sodium fluoride treatment (5 mg/l) for 72 h. Results indicate that negative effects of excess fluoride on skeletal health may be mediated in part by inhibition of osteoblast survival.
-
-
Suppression of Sclerostin and Dickkopf-1 levels in patients with fluorine bone injury
Evidence has been accumulating for the role of Sclerostin and Dickkopf-1 as the antagonists of Wnt/B-Catenin signaling pathway, which suppresses bone formation through inhibiting osteoblastic function. To get deep-inside information about the expression of the antagonists in patients with fluorine bone injury, a case-control study was conducted in two counties
-
Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo
The present study investigated the effects of fluoride on endoplasmic reticulum (ER) stress (ERS) and osteoblast apoptosis in vivo. Forty-eight Wistar rats were randomly divided into four groups (12/group) and exposed to 0, 50, 100, and 150 mg/L of fluoride in drinking water for 8 weeks, respectively. Peripheral blood samples and bilateral
-
Role of endoplasmic reticulum stress in aberrant activation of fluoride-treated osteoblasts
The aberrant activation of osteoblasts in the early stage is one of the critical steps during the pathogenesis of skeletal fluorosis. The endoplasmic reticulum (ER) stresses and unfolded protein response (UPR) are initiated to alleviate the accumulation of unfolded proteins against cell injury. The previous researches had demonstrated that fluoride
-
Sodium fluoride suppress proliferation and induce apoptosis through decreased insulin-like growth factor-I expression and oxidative stress in primary cultured mouse osteoblasts
It has been reported that sodium fluoride suppressed proliferation and induced apoptosis in osteoblasts. However, the details about the mechanism at work in bone metabolism are limited. In this study, we further investigated the mechanisms of NaF on proliferation and apoptosis in the primary cultured mouse osteoblasts, which were exposed
-
Experimental fluorosis in rats: NaF induced changes of bone and bone marrow
The results of our experiments suggest that increased doses of NaF cause more extensive osteosclerosis due to the decrease in number and/or activity of osteoclasts. Therefore oateosclerosis is caused primarily, not by increased bone formation but, by the inhibition of bone resorption. This view is supported by the fact that
Related Studies :
-
-
-
Fluoride's Effect on Osteoblasts (Bone-Forming Cells)
As noted by the National Research Council, "[p]erhaps the single clearest effect of fluoride on the skeleton is its stimulation of osteoblast proliferation." (NRC 2006). Osteoblasts are bone-forming cells. "Stimulatory effects of fluoride on osteoblasts result in formation of osteoid, which subsequently undergoes mineralization." (Fisher RL, et al. 1989). If the new
-
Fluoride Increases Osteoid Content of Bone
Fluoride's ability to increase the osteoid content of bone is now undisputed. Osteoid is an unmineralized tissue in bone that, in the normal bone remodeling process, ultimately becomes calcified. As some observers have noted, "[t]he main histological change induced by fluoride is the increase of osteoid volume." (Arnala 1985). One way fluoride
-
Fluoride & Osteoclasts
It is well established that fluoride exposure can increase bone formation by increasing the proliferation of osteoblasts. Less clear is fluoride's impact on bone resorption and the cells (osteoclasts) that resorb bone. Many have assumed that fluoride's main effect on bone resorption and osteoclasts is an inhibitory one (i.e., less
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
Related FAN Content :
-