Abstract
The article presents the results of studies of occupational fluorosis pathogenesis on experimental model of chronic fluoride intoxication (CFI). In early fluoride intoxication, fluoride and calcium in the body are in compensatory relations. Later, they are disturbed. High reaction ability of fluoride in CFI is associated with hypocalciemia which triggers parathyroid hyperactivity. This results in hyperproduction of PHH which is unrelated with development of secondary hyperparathyrosis. CFI is accompanied also with elevated calcitonin having a hypocalciemic and hypophosphatemic action. The experiments showed double content of collagen fragments of bone tissue in urine of animals with fluoride intoxication which reflects resorption of bone tissue. Serum osteocalcin rose three-fold as it was unable to include in the bone tissue. There was also activation of lipid peroxidation in subnormal activity of respiratory enzymes.
-
-
Calcium deficiency in fluoride-treated osteoporotic patients despite calcium supplementation
To test the hypothesis that the osteogenic response to fluoride can increase the skeletal requirement for calcium, resulting in a general state of calcium deficiency and secondary hyperparathyroidism, we assessed calcium deficiency, spinal bone density, by quantitative computed tomography, and serum PTH in three groups of osteoporotic subjects. Two of
-
Endemic chronic fluoride toxicity and dietary calcium deficiency interaction syndromes of metabolic bone disease and deformities in India: year 2000
Epidemiological studies during 1963-1997 were conducted in 45,725 children exposed to high intake of endemic fluoride in the drinking water since their birth. Children with adequate (dietary calcium > 800 mg/d) and inadequate (dietary calcium < 300 mg/d) calcium nutrition and with comparable intakes of fluoride (mean 9.5 +/- 1.9
-
Non-Endemic Skeletal Fluorosis: Causes And Associated Secondary Hyperparathyroidism (Case Report and Literature Review).
Highlights Fluorocarbon “huffing” is an under-appreciated cause of skeletal fluorosis (SF) We present a SF case with hyperparathyroidism, osteosclerosis, and osteomalacia SF may go undetected due to variation in symptoms, radiology, and biochemistry Dietary calcium, prior bone health, and skeletal F exposure influence SF features SF is common in
-
Normal ionized calcium, parathyroid hypersecretion, and elevated osteocalcin in a family with fluorosis
Sera from five patients with skeletal fluorosis were investigated for total calcium, ionized calcium, phosphate, alkaline phosphatase, 25 hydroxyvitamin D (25 OHD), 1,25 dihydroxyvitamin D (1,25[OH]2D), parathyroid hormone, and osteocalcin concentrations. Total and ionized calcium concentrations were normal in four and subnormal in one, but PTH concentration was elevated in all five.
-
Endemic skeletal fluorosis in children: hypocalcemia and the presence of renal resistance to parathyroid hormone
Although endemic skeletal fluorosis has been reported in children, hypocalcemia has not been previously noted. In a prevalence study of 260 schoolchildren living in an endemic fluorosis area in South Africa (water fluoride content 8-12 ppm), hypocalcemia was documented in 23%. Furthermore in a separate study of nine children with skeletal symptoms due to
Related Studies :
-
-
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
-
Fluoride Exposure Increases Metabolic Requirement for Magnesium
Fluoride's toxicity is significantly enhanced in the presence of nutritional deficiencies. Similarly, fluoride exposure increases the body's requirement for certain nutrients. An individual with a high intake of fluoride, for example, will need a proportional increase in calcium to avoid the mineralization defects (e.g., osteomalacia) that fluoride causes to bone
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
Related FAN Content :
-