Abstract
Young pigs, fed for 30, 6o and 90 days on a diet containing 1,000 parts per million of sodium fluoride, have shown defective growth and mineralization of bones, costochondral beading, softened and deformed epiphyseal plates, and enlarged and malformed bone trabeculae.
Histochemical studies of demineralized sections have revealed a decrease in the stainable polysaccharides and an accumulation of salt, the solubility of which resembled that of calcium fluoride. The larger portion of the deposit observed in spodograms seemed related to an organic calcium combination, the significance of which is discussed in relation to the mechanism of mineralization and is compared with vitamin D deficiency and strontium rickets.
-
-
Experimental chronic fluorine intoxication: Effect on bones and teeth
Chronic fluorine intoxication of puppies produced extensive systemic changes of the bones and developing teeth. The intensity depended upon the age of the animal, the dose, and the duration of the administration of sodium fluoride. In puppies fed exclusively the milk of their fluorine-poisoned mother, changes of the bones were
-
Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content
The effect of fluoride ions on the mechanical properties of bone tissue in tension was investigated with an in vitro model. Structurally effective Bone Mineral Content (BMC) of bovine bone tissue was changed by fluoride ion treatment. First, bovine cortical bone specimens were treated with a detergent solution in order
-
Effects of fluoride on cortical bone remodeling in the growing domestic pig
The purpose of the experiment was to assess the effects of fluoride (F-) on the remodeling process of cortical bone. Sixteen pigs, eight experimental animals receiving a supplement of 2 mg F-/kg b.w. and eight controls, were studied in individual sites from age 8 to 14 months. At slaughter samples
-
Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats
Ingested fluoride is incorporated into bone apatite and can affect the structural integrity of bone. Fluoride absorption in the gut and incorporation into bone is affected by the presence of other ions, including calcium. We hypothesized that a low calcium phosphate diet combined with high fluoride intake would have independent
-
The spectrum of radiographic bone changes in children with fluorosis
Painful, crippling deformities in Tanzanian children from an area of endemic fluorosis are reported. Excessive fluoride ingestion in pregnant women may possibly poison and alter enzyme and hormonal systems in the fetus causing disturbances to osteoid formation and mineralization. Knock-knees, bowlegs, and saber shins develop when walking begins. Combinations of osteomalacia, osteoporosis,
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
Related FAN Content :
-