Abstract
Young pigs, fed for 30, 6o and 90 days on a diet containing 1,000 parts per million of sodium fluoride, have shown defective growth and mineralization of bones, costochondral beading, softened and deformed epiphyseal plates, and enlarged and malformed bone trabeculae.
Histochemical studies of demineralized sections have revealed a decrease in the stainable polysaccharides and an accumulation of salt, the solubility of which resembled that of calcium fluoride. The larger portion of the deposit observed in spodograms seemed related to an organic calcium combination, the significance of which is discussed in relation to the mechanism of mineralization and is compared with vitamin D deficiency and strontium rickets.
-
-
Experimental chronic fluorine intoxication: Effect on bones and teeth
Chronic fluorine intoxication of puppies produced extensive systemic changes of the bones and developing teeth. The intensity depended upon the age of the animal, the dose, and the duration of the administration of sodium fluoride. In puppies fed exclusively the milk of their fluorine-poisoned mother, changes of the bones were
-
Fluoride increases the susceptibility of developmental dysplasia of the hip via increasing capsular laxity triggered by cell apoptosis and oxidative stress in vivo and in vitro.
Highlights Fluoride does not cause DDH directly but increases its susceptibility by increasing hip capsular laxity. Hip laxity results from apoptosis occurring in capsular fibroblast after fluoride exposure. Fluoride-induced fibroblast apoptosis was triggered by oxidative stress via mitochondrial pathway. The etiology of developmental dysplasia of the hip (DDH) is multifactorial,
-
Fluoride supplement affects bone mineralization in young rats.
Fluoride as a supplement can affect the structural integrity of bone. Fluoride that is incorporated in the mineral, substitutes for the hydroxyl group producing hydroxyfluorapatite crystals and presumed to increase bone strength by preventing resorption. Because of this, fluoride therapy has been carried out in clinical trials for the treatment
-
Effects of fluoride on bone in Finland. Histomorphometry of cadaver bone from low and high fluoride areas
In three different areas of Finland, fluoride in bone and its effect on the histomorphometry of trabecular bone was studied. Bone samples were taken from cadavers from a low-fluoride area (fluoride concentration under 0.3 ppm), an area with fluoridated drinking water (1.0-1.2 ppm) and a high-fluoride area (over 1.5 ppm).
-
Toxic effect of fluoride on biochemical parameters and collagen metabolism in osseous and non-osseous tissues of rats
The present study was carried out to assess the effects of fluoride exposure on collagen metabolism by evaluating the level of hydroxyproline in both osseous and non-osseous tissues along with serum biochemical parameters in rats. Eight week old female rats were divided into two equal groups of six rats each.
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
Related FAN Content :
-