Abstract
On the basis of 29 cases observed during 1948 to 1968, the author reports a disease termed periostitis deformans which was caused in alcoholics by sodium fluoride added to wine in concentrations of the order of 8 to 72 ppm. Four difference phases of the disease are described which are associated with osteosclerosis and osteoporosis. They lead to marked disability and may terminate fatatality.
Excerpt:
Fluoric Arthropathies: Around joints, thick marginal osteophytes develop. In some instances, they grow to such an extent as to block joint movement (‘blocking arthrosis’). The joint block can also be induced by calcification of the periarticular ligament. The most common sites of articular involvement are the hips, the sacroiliac, elbow and knee joints. In older persons, the vetebral column is commonly affected. Advanced stages of the disease show atrophy and ulceration of joint cartilage.
-
-
Dose-response relationship between skeletal fluorosis and fluoride in brick-tea
The dose-response relationship between fluoride in brick-tea and the prevalence of skeletal fluorosis (SF) in adults was studied to determine a safe upper limit for fluoride intake from brick-tea. In brick-tea drinking endemic fluorosis areas of the Tibetan pastoral areas of Sichuan province, cluster sampling was conducted of residents above age
-
Reducing the off-target endocrinologic adverse effects of azole antifungals—can it be done?
Highlights Azole antifungals are associated with off-target endocrinologic adverse events. Skeletal fluorosis, pseudohyperaldosteronism, adrenal insufficiency, hyponatraemia and hypogonadism are reported. Clinical and biochemical monitoring may play a role in prevention and progression. Novel azoles offer therapeutic advantages due to greater selectivity of binding to fungal CYP51. Integration of pharmacogenomics
-
ESPEN micronutrient guideline
Background Trace elements and vitamins, named together micronutrients (MNs), are essential for human metabolism. Recent research has shown the importance of MNs in common pathologies, with significant deficiencies impacting the outcome. Objective This guideline aims to provide information for daily clinical nutrition practice regarding assessment of MN status, monitoring, and prescription. It proposes
-
An Outbreak of Industrial Fluorosis in Cattle.
IT may be recalled that in the "Discussion on Fluorosis in Man and Animals" by this Section in February 19411 the occurrence of severe fluorosis in cattle was described on farms in the vicinity of brickworks in Bedfordshire. The purpose of the present communication is to report a similar occurrence
-
Associations of fluoride intake with children's bone measures at age 11.
BACKGROUND: Relationships between fluoride intake and bone health continue to be of interest, as previous studies show conflicting results. OBJECTIVES: The purpose is to report associations of fluoride intake with bone measures at age 11. METHODS: Subjects have been participating in the ongoing Iowa Fluoride Study/Iowa Bone Development Study. Mothers were recruited
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
Related FAN Content :
-