Abstract
There is little information about the pattern of fluoride distribution in human bones relative to sex and age. The present study is the first of its kind to be undertaken to determine in detail the fluoride distribution profile in human bone.
Human ribs were obtained from 119 patients (M: 72, F: 47) aged 20 to 93 yrs. The fluoride distribution from the periosteal to the endosteal was determined in each specimen using the abrasive micro-sampling technique. Fluoride was determined using the fluoride electrode as previously described by Hallsworth, Weatherell and Deutsch (1976), and phosphorus was determined by the colorimetric procedure of Chen, Toribara and Warner (1956).
The concentration of fluoride was highest in the periosteal layer and then decreased gradually towards the interior of the tissue. The amount of fluoride leveled off and then rose again just before the endosteal surface. The difference between periosteal and endosteal fluoride increased with age. Overall, fluoride concentrations increased steadily with age in male subjects but leveled off until the age of 55 yrs and then increased markedly in female subjects over the age of 55 yrs.
-
-
Association Between Osteoarthritis and Water Fluoride Among Tongyu Residents, China, 2019: a Case–Control of Population-Based Study
Fluoride is an environmental chemical that has adverse effects on articular cartilage, probably increasing osteoarthritis (OA) risk. However, this association still needs more epidemiological evidence to clarify. The aim of this study was to determine the relationships between chronic fluoride exposure and OA risk among the residents living in Tongyu
-
Bone resorption and quantitative ultrasound in an endemic fluorosis area of Turkey.
The purpose of this prospective study was to investigate the quantity and quality of bone by quantitative ultrasound (QUS) measurements and to assess bone resorption by urinary excretion measurement of C-terminal telopeptide of type I collagen (CTX) in an adult Turkish population living in an endemic fluorosis area and consuming
-
Chronic Exposure to Fluoride During Gestation and Lactation Increases Mandibular Bone Volume of Suckling Rats.
We aimed to investigate the effect of maternal exposure to NaF on mandibular bone microarchitecture and phosphocalcic plasma parameters of the offspring. For this purpose, 10-, 15-, and 21-day-old pups (n?=?6-8 per group) from two groups of mothers, control and NaF 50mg/L treated dams, were used. Plasma calcium (Ca) and
-
The effect of pregnancy and lactation on bone mineral density in fluoride-exposed rats
Fluoride increases metabolic turnover of the bone in favour of bone formation. Excessive intake of fluoride may lead to pathological changes in teeth and bones: dental and skeletal fluorosis. In this study, we investigated the effect of pregnancy and lactation on bone mineral density (BMD) in fluoride-exposed rats. Female Wistar
-
Denser but Not Stronger? Fluoride-Induced Bone Growth and Increased Risk of Hip Fractures.
Abstract Since the mid-1940s, fluoride has been added to toothpaste and (in some countries) tap water, table salt, or milk to reduce dental cavities.1 Although low-level fluoride supplementation prevents cavities, higher levels cause white mottling of the teeth.2 What is more, some studies suggest fluoride in drinking water may increase the
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
Related FAN Content :
-