Fluoride Action Network


1. Sodium fluoride causes apoptosis of pancreatic beta-cells and this response is enhanced by pre-treatment with pertussis toxin. In the present study, tyrosine kinase inhibitors were used to investigate the mechanisms of action of NaF and pertussis toxin in the beta-cell line, RINm5F.

2. Exposure of RINm5F cells to low concentrations of genistein or tyrphostin A25 resulted in significant inhibition of cell death induced by 5 mM NaF. Higher concentrations (>25 microM) were cytotoxic in the absence of NaF but, paradoxically, the combination of genistein and NaF induced less cell death than when each agent was used alone.

3. The increase in cell death induced by 100 microM genistein was markedly inhibited by ciprofloxacin, a drug which binds to topoisomerase II. Etoposide (which inhibits topoisomerase II but has no effect on tyrosine kinase activity) also caused an increase in RINm5F cell death. Neither etoposide nor ciprofloxacin altered the response to 5 mM NaF.

4. Pertussis toxin markedly enhanced the extent of RINm5F cell death induced by NaF and this effect was completely prevented by 25 microM genistein. The inhibition caused by genistein was not affected by ciprofloxacin but was reproduced by a structurally dissimilar tyrosine kinase inhibitor, herbimycin A.

5. The results demonstrate that RINm5F beta-cells express a pertussis toxin sensitive pathway that is anti-apoptotic. The activity of this pathway is most evident in cells exposed to pro-apoptotic stimuli where the effects of pertussis toxin can be blocked by inhibitors of tyrosine kinase enzymes. A genistein-sensitive tyrosine kinase does not appear to be involved in RINm5F cell survival under basal conditions.