Abstract
To study the effects of fluoride on cell growth, cell cycle and apoptosis in cultured osteoblasts of rats. The enzymes digesting method was used to isolate the osteoblasts of rats. The activity of the cells was determined by the percents of reduced AlamarBlue. FCM was used to analyze cell cycle and apoptosis. The results showed that the activity of rat osteoblast was not influenced by NaF at 0 to 2 mmol/L concentration after 24 hours incubation. At the concentration of 2 mmol/L, the number of cells at S phase was increased. At the concentration of 4 mmol/L, NaF increased the number of cells at S phase and at the same time, decreased the number of cells at G2/M phase, but the number of the cells at G0/G1 phase kept unchanged. The percent of apoptosis was increased at the concentration of 2 mmol/L. Excessive fluoride could affect the cell activity, retarded cell cycle at S phase and induced apoptosis.
-
-
Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo
The present study investigated the effects of fluoride on endoplasmic reticulum (ER) stress (ERS) and osteoblast apoptosis in vivo. Forty-eight Wistar rats were randomly divided into four groups (12/group) and exposed to 0, 50, 100, and 150 mg/L of fluoride in drinking water for 8 weeks, respectively. Peripheral blood samples and bilateral
-
Different Effects of Fluoride Exposure on the Three Major Bone Cell Types.
Fluoride accumulates and is toxic to bones. Clinical bone lesions occur in a phased manner, being less severe early in the natural course of skeletal fluorosis. Previous research rarely focused on osteocyte, osteoclast, and osteoblast at the same time, although these three types of cells are involved in the process
-
Biphasic Functions of Sodium Fluoride (NaF) in Soft and in Hard Periodontal Tissues.
Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts,
-
Expression of autophagy-related factors LC3A and Beclin 1 and apoptosis-related factors Bcl-2 and BAX in osteoblasts treated with Sodium Fluoride.
Objective: This study aims to analyze the expressions of autophagy-related factors light chain 3 alpha (LC3A) and Beclin 1 and apoptosis-related factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (BAX) in primary osteoblasts treated with sodium fluoride (NaF). Methods: Osteoblasts were extracted from Sprague-Dawley rats and treated with 0, 2.5, 5,
-
Sodium fluoride suppress proliferation and induce apoptosis through decreased insulin-like growth factor-I expression and oxidative stress in primary cultured mouse osteoblasts
It has been reported that sodium fluoride suppressed proliferation and induced apoptosis in osteoblasts. However, the details about the mechanism at work in bone metabolism are limited. In this study, we further investigated the mechanisms of NaF on proliferation and apoptosis in the primary cultured mouse osteoblasts, which were exposed
Related Studies :
-
-
-
Fluoride's Effect on Osteoblasts (Bone-Forming Cells)
As noted by the National Research Council, "[p]erhaps the single clearest effect of fluoride on the skeleton is its stimulation of osteoblast proliferation." (NRC 2006). Osteoblasts are bone-forming cells. "Stimulatory effects of fluoride on osteoblasts result in formation of osteoid, which subsequently undergoes mineralization." (Fisher RL, et al. 1989). If the new
-
Fluoride Increases Osteoid Content of Bone
Fluoride's ability to increase the osteoid content of bone is now undisputed. Osteoid is an unmineralized tissue in bone that, in the normal bone remodeling process, ultimately becomes calcified. As some observers have noted, "[t]he main histological change induced by fluoride is the increase of osteoid volume." (Arnala 1985). One way fluoride
Related FAN Content :
-