Fluoride Action Network


CONTEXT: Oxidative damage to cellular components such as lipids and cell membranes by free radicals and reactive oxygen species (ROS) is thought to be associated with the development of degenerative diseases. Fluoride intoxication is associated with oxidative stress and altered anti-oxidant defense mechanism. Lycopene is a lipid-soluble powerful anti-oxidant that scavenges free radicals and ROS.

OBJECTIVE: This study was extended to investigate lycopene anti-oxidant efficacy in different organs of fluoride-intoxicated rats.

METHODS: Twenty-four adult rats were randomly divided into four groups of six animals each. Rats in group I received daily doses of vehicle. Group II rats were given lycopene (10 mg/kg body weight/day), by tubes, dissolved in 0.5 ml of corn oil for 5 weeks. Group III rats were given sodium fluoride (NaF) (10.3 mg/kg body weight/day), by tubes, for 5 weeks. In group IV rats, lycopene was administered 1 h later and NaF was administered for 5 weeks.

RESULTS: NaF administration induced oxidative stress as evidenced by elevated levels of lipid peroxidation (51.3, 65.9 and 67.6%) measured as malondialdehyde and total nitrate/nitrite (61.0, 59.7 and 68.9%) in red blood cells, heart and brain tissues. Moreover, significantly decreased reduced glutathione level, total anti-oxidant capacity and superoxide dismutase activity were observed in the examined tissues. The induced oxidative stress and the alterations in anti-oxidant system were normalized by the oral administration of lycopene treatment.

CONCLUSION: Lycopene administration could minimize the toxic effects of fluoride indicating its free-radical scavenging and powerful anti-oxidant activities.