Abstract
The effects of sodium fluoride (NaF) exposure on the induction of oxidative stress and alteration of gene expressions were studied in the liver of female zebrafish (Danio rerio). Zebrafish, exposed to 15 ppm NaF for 30 and 90 days, exhibited liver histopathology including hyperplassia, cytoplasmic degeneration and nuclear fragmentation. Antioxidant enzyme (GST, CAT, SOD) activities in the liver altered significantly; the mRNA levels for the genes encoding antioxidant proteins, such as Gst, Cat, Cu/ZnSod, MnSod as well as Gpx were significantly upregulated at 30 days NaF-treatment along with the stress marker gene Hsp70 and phase I detoxyfying gene Cyp1A1. Moreover, the transcriptional pattern of Ucp2, related to mitochondrial reactive oxygen species (ROS) production, upregulated significantly at 90 days NaF-treatment. ROS generation was evidensed by fluoroscence microscopy. The results of this study will help to understand the mechanism of oxidative stress induced by NaF in fish.
*Abstract online at https://link.springer.com/article/10.1007%2Fs00128-014-1271-0
-
-
Sex-specific effects of fluoride and lead exposures on histology, antioxidant physiology, and immune system in the liver of zebrafish (Danio rerio).
Fluoride and Pb are both toxic to organisms; however, their combination effects and the corresponding toxic mechanisms remain unclear. In this study, male and female zebrafish (1:1) were evaluated to understand the effects of F and Pb alone and combined on growth, tissue microstructure, oxidative stress, and immune system functions
-
Effects of fluoride on the histology, lipid metabolism, and bile acid secretion in liver of Bufo gargarizans larvae.
Highlights Fluoride triggered histopathological alterations in the liver. Fluoride induced the disruption of lipid metabolism. Fluoride resulted in impairing of antioxidant capacity. Fluoride disturbed the synthesis and secretion of bile acid. Abstract In our study, Bufo gargarizans (B. gargarizans) larvae were exposed to control, 0.5, 5, 10 and 50?mg/L of NaF from
-
Cyperus esculentus suppresses hepato-renal oxidative stress, inflammation, and caspase-3 activation following chronic exposure to sodium fluoride in rats’ model.
Background Death arising from hepato-renal related diseases is on the increase. Cyperus esculentus (CE) possesses antioxidants potentials. This study aim at investigating the effect of Cyperus esculentus on sodium fluoride (NaF)-induced hepato-renal toxicity in rats. Methods Twenty-four male rats weighting (10–12 weeks old, 200± 20 g) randomized into group A (control) received 1 ml normal
-
Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms.
Highlights Hesperidin prevented NaF-induced hepatotoxicity and nephrotoxicity. Hesperidin attenuated NaF-induced oxidative stress and inflammation. Hesperidin reduced NaF-induced apoptosis and autophagy. Aim High dose of fluoride intake is associated with toxic effects on liver and kidney tissues. One approach to tackle these toxicities is using natural antioxidants as supplements. This study evaluated
-
Ameliorative effect of tamarind leaf on fluoride-induced metabolic alterations
OBJECTIVES: Fluoride is a serious health hazard across several nations, and chronic intake of fluoride deranges the carbohydrate, lipid and antioxidant metabolism in general. As there are limited remedial measures to prevent fluorosis, we investigated the role of tamarind leaf as a food supplement in restoration of carbohydrate, lipid and
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
Related FAN Content :
-