Abstract
The aim of the study was to investigate fluoride concentrations in bone, brain and pineal gland of goosander Mergus merganser wintering in the Odra estuary (Poland) as well as in fish originating from its digestive tract. The fluoride concentrations were determined with potentiometric method. Medians of concentrations in goosander had the highest and the lowest values in pineal gland and brain ( [ 760 and 190 mg/kg, respectively). Fluoride concentration in the pineal gland was significantly greater than in the bone and the brain of the duck. In fish, the fluoride concentration ranged from 37 to 640 mg/kg and significant correlation was revealed between the fluoride concentration and fish weight and length. Based on own results and data of other authors, a daily fluoride intake by the goosander in the Odra estuary was estimated at 15 mg. So high fluoride concentrations like in the duck have not been found in mammal brains.
-
-
Human epiphyseal concrements in schizophrenia.
The epiphysis is a gland containing firm extracellular bodies (brain sand) the number of which increases with age. Microscopy and roentgen microtomography showed that in some cases of schizophrenia the amount of brain sand decreases. In parallel, cytoplasm of pinealocytes appears to contain concrements of a new type--irregular hollow spheres
-
Histological and chemical studies in man on effects of fluoride
The presence of elevated concentrations of fluorides in the atmosphere has been associated with changes in certain plants and an increase in the fluoride content of forage in certain areas in Utah. Long-term ingestion of such forage by some animals has produced changes characteristic of fluorosis in some of them.
-
An Evaluation of Neurotoxicity Following Fluoride Exposure from Gestational Through Adult Ages in Long-Evans Hooded Rats.
At elevated levels, fluoride (F-) exposure has been associated with adverse human health effects. In rodents, F- exposure has been reported to induce deficits in motor performance and learning and memory. In this study, we examined Long-Evans hooded male rats maintained on a standard diet (20.5 ppm F-) or a low
-
Fluoride-induced oxidative stress in rat's brain and its amelioration by buffalo (Bubalus bubalis) pineal proteins and melatonin.
Fluoride (F) becomes toxic at higher doses and induces some adverse effects on various organs, including brain. The mechanisms underlying the neurotoxicity caused by excess fluoride still remain unknown. The aims of this study were to examine F-induced oxidative stress (OS) and role of melatonin (MEL) and buffalo pineal proteins
-
The tissue distribution of fluoride in a fatal case of self-poisoning.
The purpose of this paper is to report a case of fluoride poisoning along with a discussion of poisoning characteristics, analytical procedures, and a review of previous reports of fatal intoxications with analytical data. A case of suicidal ingestion of 40 mL of a rust removal agent containing hydrofluoric acid
Related Studies :
-
-
-
Luke (1997): The Effect of Fluoride on the Physiology of the Pineal Gland (Excerpts)
"The results suggest that fluoride is associated with low circulating levels of melatonin and this leads to an accelerated sexual maturation in female gerbils. The results strengthen the hypothesis that the pineal has a role in pubertal development."
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Luke (2001): Fluoride Deposition in the Aged Human Pineal Gland
This study has added new knowledge on the fate and distribution of fluoride in the body. It has shown for the first time that fluoride readily accumulates in the human pineal gland although there was considerable inter-individual variation
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
Related FAN Content :
-